摘要
设P,q为奇素数,m为正奇数,且P+2^m=q,P=3(mod4).证明了:当m=1或3时,椭圆曲线y^2=x(x—p)(z—q)(z〉q)至多有1对整数点(X,可);当m≥5时,该椭圆曲线至多有2对整数点(x,y).同时具体给出了(p,q)=(71,103)时椭圆曲线的全部整数点.
Let p,q be odd primes and m be positive odd number with p +2m = q,p = 3(rood4). In this paper, we prove that if m= 1 or 3, then the elliptic curve y^2 = x(x - p)(x - q)(x 〉 q) has at most one integral point (x,y); if m ≥5 , then the elliptic curve has at most two integral points (x, y). Additionary, all integral points of the elliptic curve when (p, q) = (71,103) are given.
出处
《数学的实践与认识》
北大核心
2018年第4期272-279,共8页
Mathematics in Practice and Theory
基金
国家自然科学基金(11471144)
江苏省自然科学基金(BK20171318)
泰州学院教博基金(TZXY2016JBJJ001)
关键词
椭圆曲线
整数点
丢番图方程
上界
elliptic curve
integral point
Diophantine equation
upper bound