期刊文献+

Diagnostic of capacitively coupled radio frequency plasma from electrical discharge characteristics:comparison with optical emission spectroscopy and fluid model simulation 被引量:3

Diagnostic of capacitively coupled radio frequency plasma from electrical discharge characteristics:comparison with optical emission spectroscopy and fluid model simulation
下载PDF
导出
摘要 The capacitively coupled radio frequency(CCRF)plasma has been widely used in various fields.In some cases,it requires us to estimate the range of key plasma parameters simpler and quicker in order to understand the behavior in plasma.In this paper,a glass vacuum chamber and a pair of plate electrodes were designed and fabricated,using 13.56 MHz radio frequency(RF)discharge technology to ionize the working gas of Ar.This discharge was mathematically described with equivalent circuit model.The discharge voltage and current of the plasma were measured atdifferent pressures and different powers.Based on the capacitively coupled homogeneous discharge model,the equivalent circuit and the analytical formula were established.The plasma density and temperature were calculated by using the equivalent impedance principle and energy balance equation.The experimental results show that when RF discharge power is 50–300 W and pressure is 25–250 Pa,the average electron temperature is about 1.7–2.1 e V and the average electron density is about 0.5?×10^17–3.6?×10^17m^-3.Agreement was found when the results were compared to those given by optical emission spectroscopy and COMSOL simulation. The capacitively coupled radio frequency(CCRF)plasma has been widely used in various fields.In some cases,it requires us to estimate the range of key plasma parameters simpler and quicker in order to understand the behavior in plasma.In this paper,a glass vacuum chamber and a pair of plate electrodes were designed and fabricated,using 13.56 MHz radio frequency(RF)discharge technology to ionize the working gas of Ar.This discharge was mathematically described with equivalent circuit model.The discharge voltage and current of the plasma were measured atdifferent pressures and different powers.Based on the capacitively coupled homogeneous discharge model,the equivalent circuit and the analytical formula were established.The plasma density and temperature were calculated by using the equivalent impedance principle and energy balance equation.The experimental results show that when RF discharge power is 50–300 W and pressure is 25–250 Pa,the average electron temperature is about 1.7–2.1 e V and the average electron density is about 0.5?×10^17–3.6?×10^17m^-3.Agreement was found when the results were compared to those given by optical emission spectroscopy and COMSOL simulation.
出处 《Plasma Science and Technology》 SCIE EI CAS CSCD 2018年第2期26-33,共8页 等离子体科学和技术(英文版)
基金 supported by National Natural Science Foundation of China(Grant No.61378037) the Fundamental Research Funds for the Central Universities(Nos.2013B33614,2017B15214) the Research Funds of Innovation and Entrepreneurship Education Reform for Chinese Universities(No.16CCJG01Z004) the Changzhou Science and Technology Program(No.CJ20160027)
关键词 plasma diagnostic equivalent circuit model optical emission spectrometry COMSOL simulation plasma diagnostic equivalent circuit model optical emission spectrometry COMSOL simulation
  • 相关文献

同被引文献21

引证文献3

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部