摘要
Optical emission spectroscopy is a passive diagnostic technique,which does not perturb the plasma state.In particular,in a hydrogen plasma,Balmer-alpha(Hα) emission can be easily measured in the visible range along a line of sight from outside the plasma vessel.Other emission lines in the visible spectral range from hydrogen atoms and molecules can be exploited too,in order to gather complementary pieces of information on the plasma state.Tomography allows us to capture bi-dimensional structures.We propose to adopt an emission spectroscopy tomography for studying the transverse profiles of magnetized plasmas when Abel inversion is not exploitable.An experimental campaign was carried out at the Thorello device,a simple magnetized torus.The characteristics of the profile extraction method,which we implemented for this purpose are discussed,together with a few results concerning the plasma profiles in a simply magnetized torus configuration.
Optical emission spectroscopy is a passive diagnostic technique,which does not perturb the plasma state.In particular,in a hydrogen plasma,Balmer-alpha(Hα) emission can be easily measured in the visible range along a line of sight from outside the plasma vessel.Other emission lines in the visible spectral range from hydrogen atoms and molecules can be exploited too,in order to gather complementary pieces of information on the plasma state.Tomography allows us to capture bi-dimensional structures.We propose to adopt an emission spectroscopy tomography for studying the transverse profiles of magnetized plasmas when Abel inversion is not exploitable.An experimental campaign was carried out at the Thorello device,a simple magnetized torus.The characteristics of the profile extraction method,which we implemented for this purpose are discussed,together with a few results concerning the plasma profiles in a simply magnetized torus configuration.