期刊文献+

CPicker: Leveraging Performance-Equivalent Configurations to Improve Data Center Energy Efficiency

CPicker: Leveraging Performance-Equivalent Configurations to Improve Data Center Energy Efficiency
原文传递
导出
摘要 The poor energy proportionality of server is seen as the principal source for low energy efficiency of modern data centers. We find that different resource configurations of an application lead to similar performance, but have distinct energy consumption. We call this phenomenon as "performance-equivalent resource configurations (PERC)", and its performance range is called equivalent region (ER). Based on PERC, one basic idea for improving energy efficiency is to select the most efficient configuration from PERC for each application. However, it cannot support every application to obtain optimal solution when thousands of applications are run simultaneously on resource-bounded servers. Here we propose a heuristic scheme, CPicker, based on genetic programming to improve energy efficiency of servers. To speed up convergence, CPicker initializes a high quality population by first choosing configurations from regions that have high energy variation. Experiments show that CPicker obtains above 17% energy efficiency improvement compared with the greedy approach, and less than 4% efficiency loss compared with the oracle case. The poor energy proportionality of server is seen as the principal source for low energy efficiency of modern data centers. We find that different resource configurations of an application lead to similar performance, but have distinct energy consumption. We call this phenomenon as "performance-equivalent resource configurations (PERC)", and its performance range is called equivalent region (ER). Based on PERC, one basic idea for improving energy efficiency is to select the most efficient configuration from PERC for each application. However, it cannot support every application to obtain optimal solution when thousands of applications are run simultaneously on resource-bounded servers. Here we propose a heuristic scheme, CPicker, based on genetic programming to improve energy efficiency of servers. To speed up convergence, CPicker initializes a high quality population by first choosing configurations from regions that have high energy variation. Experiments show that CPicker obtains above 17% energy efficiency improvement compared with the greedy approach, and less than 4% efficiency loss compared with the oracle case.
出处 《Journal of Computer Science & Technology》 SCIE EI CSCD 2018年第1期131-144,共14页 计算机科学技术学报(英文版)
基金 This work is supported by the National Natural Science Foundation of China under Grant Nos. 61572470, 61532017, 61522406, 61432017, 61376043, 61504153, and 61521092, and in part by Youth Innovation Promotion Association, Chinese Academy of Sciences (CAS), under Grant No. Y404441000.
关键词 performance equivalence energy efficiency data center power management dynamic voltage and frequencyscaling (DVFS) performance equivalence, energy efficiency, data center, power management, dynamic voltage and frequencyscaling (DVFS)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部