期刊文献+

Bioremediation Process and Bioremoval Mechanism of Heavy Metal Ions in Acidic Mine Drainage 被引量:1

Bioremediation Process and Bioremoval Mechanism of Heavy Metal Ions in Acidic Mine Drainage
原文传递
导出
摘要 Acidic mine drainage(AMD) containing acidity and a broad range of heavy metal ions is classified as hazardous, and must be properly treated. The removal mechanism of heavy metal ions in acidic mine drainage containing Cu^2+, Fe^2+, and Zn^2+ with biological method was studied here. Using 20 mmol/L ethanol as carbon source, Desulfovibrio marrakechensis, one of sulfate reducing bacteria(SRB) species, grew best at 35℃ and pH=6.72 with concentrations of 10, 55 and 32 mg/L for Cu^2+, Fe^2+ and Zn^2+, respectively. The removal efficiency for each ion mentioned above was 99.99%, 87.64% and 99.88%, respectively. The mineralogy and surface chemistry of precipitates were studied by means of energy dispersive spectrometer(EDS), X-ray photoelectron spectroscopy(XPS), X-ray diffraction(XRD) combined with control tests. The experimental results demonstrate that the removal mechanism of heavy metal ions by Desulfovibrio marrakechensis is comprehensive function of chemical precipitation, adsorption and bioprecipitation. The biogenic iron sulfide solid was characterized as greigite(Fe3S4), while the zinc sulfide solid was characterized as sphalerite(ZnS). Acidic mine drainage(AMD) containing acidity and a broad range of heavy metal ions is classified as hazardous, and must be properly treated. The removal mechanism of heavy metal ions in acidic mine drainage containing Cu^2+, Fe^2+, and Zn^2+ with biological method was studied here. Using 20 mmol/L ethanol as carbon source, Desulfovibrio marrakechensis, one of sulfate reducing bacteria(SRB) species, grew best at 35℃ and pH=6.72 with concentrations of 10, 55 and 32 mg/L for Cu^2+, Fe^2+ and Zn^2+, respectively. The removal efficiency for each ion mentioned above was 99.99%, 87.64% and 99.88%, respectively. The mineralogy and surface chemistry of precipitates were studied by means of energy dispersive spectrometer(EDS), X-ray photoelectron spectroscopy(XPS), X-ray diffraction(XRD) combined with control tests. The experimental results demonstrate that the removal mechanism of heavy metal ions by Desulfovibrio marrakechensis is comprehensive function of chemical precipitation, adsorption and bioprecipitation. The biogenic iron sulfide solid was characterized as greigite(Fe3S4), while the zinc sulfide solid was characterized as sphalerite(ZnS).
机构地区 College of Chemistry
出处 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2018年第1期33-38,共6页 高等学校化学研究(英文版)
关键词 Acid mine drainage Sulfate reducing bacteria Heavy metal ion PRECIPITATE Removal mechanism Acid mine drainage Sulfate reducing bacteria Heavy metal ion Precipitate Removal mechanism
  • 相关文献

同被引文献3

引证文献1

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部