期刊文献+

非结构多面体二阶局部保界全局重映算法 被引量:3

Second-order Local-Bound-Preserving Conservative Remapping on Unstructured Polyhedral Meshes
原文传递
导出
摘要 提出一种三维非结构多面体二阶保界全局重映算法.在旧网格上选取模板利用最小二乘构造插值多项式,采用凸包算法计算多面体相交部分,最后使用局部保界修正技术修补重映后的越界量.多项数值实验表明这种格式同时具有高精度、高分辨率和高效率的特点. We present conservatively remapping cell-centered variables from one mesh to another with second-order accuracy and boundary-preservation.It is generally applicable to any polyhedral source or target mesh.The algorithm consists of four parts:A least square based polynomial reconstruction of physical gradient;an octree-based fast donor-cell searing algorithm;a convex hull algorithm for intersection of polyhedrons and a modifying procedure for local bound preservation.The remapping scheme is scalable,second-order accurate and enjoys bound preservation property.Various benchmark problems demonstrate these properties.Numerical results show that it takes hundreds seconds to remap physical variables on tessellation with hundreds thousands to millions polyhedrons.
出处 《计算物理》 EI CSCD 北大核心 2018年第1期22-28,共7页 Chinese Journal of Computational Physics
基金 国家自然科学基金(11701036,11671050,11501043,U1630247,91430218) 科学挑战计划(JCKY2016212A502) 国家高技术研究发展计划(2015AA01A304)资助项目
关键词 全局重映 局部保界算法 多面体求交 贡献网格方法 global remap local hound preservation method intersection of polyhedrons donor cell method
  • 相关文献

参考文献4

二级参考文献20

  • 1王永健,赵宁.一类基于ENO插值的守恒重映算法[J].计算物理,2004,21(4):329-334. 被引量:8
  • 2Benson D J. Momentum advection on a staggered mesh [J]. J Comput Phys, 1992,100:143.
  • 3Dukowicz J K. Conservative rezoning (remapping) for general quadrilateral meshes[J]. J Comput Phys,1984,54:411~423.
  • 4Ramshaw J D. Conservative rezoning algorithm for generalized two-dimensional meshes[J]. J Comput Phys,1985, 59:193~199.
  • 5Margolin L G, Shashkov M. Second-order sign-preserving conservative interpolation(remapping) on general grids[J]. J Comput Phys, 2003,184:266~298.
  • 6蔡庆东.非结构网格和结构网格生成及自适应软件的研制[R].北京应用物理与计算数学研究所计算物理实验室,1999..
  • 7Shashkov M, Wendroff B. The repair paradigm and application to conservation laws[J]. J Comput Phys,2004,198:265~277.
  • 8Benson D J. Momentum advection on a staggered mesh [J]. J Comput Phys,1992,100:143.
  • 9Dukowicz J K. Conservation rezoning(remapping) for general quadrilateral meshes [J] .J Comput Phys, 1984,54:411 - 423.
  • 10Ramshaw J D. Conservative rezoning algorithm for generalized two-dimensional meshes [J] .J Comput Phys,1985 ,59 :193 - 199.

共引文献9

同被引文献13

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部