期刊文献+

采用Melnikov方法的齿轮传动系统的分岔及混沌分析 被引量:6

Bifurcation and Chaos Analysis of Gear Transmission System Based on Melnikov Method
下载PDF
导出
摘要 考虑含齿侧间隙、时变啮合刚度、综合啮合误差等因素下的单自由度直齿轮系统动力学模型。利用Melnikov方法对系统同宿轨线出现分岔及马蹄混沌的参数区域进行了预测。采用变步长Runge-Kutta法对单自由度运动微分方程进行了数值求解。结合系统的相图、庞加莱截面图以及最大李雅普诺夫指数,分析了系统随内部误差激励力变化时的动力学特性,得到系统的混沌运动规律。数值模拟的结果和Melnikov方法预测的系统出现同宿分岔和混沌的参数区域相吻合。 The dynamic model of single-degree-of-freedom spur gear system is considered considering the factors such as tooth side clearance,time varying meshing stiffness and comprehensive engagement error. The parameters of bifurcation and horseshoe chaos are predicted by Melnikov method. The variable step size Runge-Kutta integration method is used to solve the differential equations of singledegree-of-freedom motion. Combined with the phase diagram of the system,the Poincaré section and the largest Lyapunov exponent,the dynamic characteristics of the system with the change of the internal error excitation force are analyzed,and the chaotic motion of the system is obtained. The results of the numerical simulation are consistent with those of the system in which the Melnikov method predicts the homoclinic bifurcation and chaos.
作者 周杜 乐源
出处 《重庆理工大学学报(自然科学)》 CAS 北大核心 2018年第1期92-99,共8页 Journal of Chongqing University of Technology:Natural Science
基金 国家自然科学基金资助项目(11672249 11732014)
关键词 齿轮系统 MELNIKOV方法 同宿分岔 混沌 李雅普诺夫指数 gear system Melinkov method homoclinic bifurcation chaos Lyapunov exponent
  • 相关文献

参考文献7

二级参考文献95

  • 1刘梦军,沈允文,董海军.齿轮系统参数对全局特性影响的研究[J].机械工程学报,2004,40(11):58-63. 被引量:7
  • 2王建军,李其汉,李润方.齿轮系统非线性振动研究进展[J].力学进展,2005,35(1):37-51. 被引量:82
  • 3黄迪山,童忠铹.裂纹转子参数扭振特性研究[J].中国纺织大学学报,1993,19(5):42-47. 被引量:4
  • 4李润方 王建军.齿论系统动力学[M].北京:科学出版社,1997..
  • 5日本机械学会.齿轮强度设计资料[M].北京:机械工业出版社,1984..
  • 6Gaonkar G H, Peters D A. Review of Floquet theory in stability and response analysis of dynamic systems with periodic coefficients. The R. L. Bisplinghoff Memorial Symposium Volume on Recent Trends in Aero-elasticity[ C ]. Structures and Structural dynamics, University Presses of Florida, 1987, 101 - 119.
  • 7Nagabhushanam J, Gaonkar G H. Automatic identification of modal damping from Floquet analysis [J]. Journal of the American Helicopter Society, 1995,40 (2) : 39 - 42.
  • 8Ibrahim R A. Parametric vibration-part III : Current problems ( 1 ) [ J ]. The Shock and Vibration Digest, 1978, 10 ( 3 ) : 41 -57.
  • 9Ibrahim R A. Parametric vibration-part III. Current problems (2) [J]. The Shock and Vibration Digest, 1978,10(4) : 19 -47.
  • 10Bolotin V V. Dynamic stability of elastic systems [M].San Francisco : Holden-Day, 1964.

共引文献131

同被引文献49

引证文献6

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部