期刊文献+

基于空间加权协同稀疏的高光谱解混算法研究 被引量:4

Spatially weighted collaborative sparse unmixing for hyperspectral images
下载PDF
导出
摘要 针对传统稀疏解混算法因空间信息利用不足带来的丰度图像空间分布连续性差的问题,本文提出了一种基于空间加权协同稀疏的解混方法.该方法利用协同稀疏正则项刻画丰度系数的行稀疏性;同时,在协同稀疏框架下,引入空间加权因子挖掘高光谱图像邻域像元间的空间相关性.本模型采用交替方向乘子法求解,通过交替迭代,对空间权重和丰度系数进行优化.模拟和真实高光谱数据实验结果表明本文方法能够比现有同类方法获得更精确的解混结果. In this paper,we propose a spatially weighted collaborative sparse unmixing method aiming at fully exploiting the spatial information in the hyperspectral images,in which a collaborative sparse regularizer is used to describe the row sparsity of the abundance,while on the top of the collaborative regularizer,a spatial weighting factor introducing the spatial correlations is incorporated. The proposed model is optimized by the well known alternating direction method of multiplier.Our experimental results,conducted using both simulated and real hyperspectral data sets,illustrate the good potential of the proposed algorithm which can greatly improve the abundance estimation results when compared with other advanced sparse unmixing methods.
出处 《南京信息工程大学学报(自然科学版)》 CAS 2018年第1期92-101,共10页 Journal of Nanjing University of Information Science & Technology(Natural Science Edition)
基金 国家自然科学基金(61771496 61371165) 广东省自然科学基金(2016A030313254)
关键词 高光谱图像 稀疏解混 空间加权 协同稀疏回归 hyperspectral imaging sparse unmixing spatially weighted collaborative sparse regression
  • 相关文献

参考文献3

二级参考文献112

  • 1张旭明,徐滨士,董世运.用于图像处理的自适应中值滤波[J].计算机辅助设计与图形学学报,2005,17(2):295-299. 被引量:159
  • 2Dias J, Plaza A. Hyperspectral unmixing geometrical, statistical and sparse regression-based approaches [ A ]. Proceedings of SPIE: Image and Signal Processing for Remote Sensing XVI [ C ]. Bellingham, USA: SPIE Press,2010.
  • 3Bobin J, Moudden Y, Starck J L, et al. Sparsity constraints for hyperspectral data analysis: Linear mixture model and beyond [ A ]. Proceedings of SPIE: Wavelets XIII [ C ]. Bellingham, USA : SPIE Press ,2009.
  • 4Iordache M D, Dias J, Plaza A. Umixing sparse hyperspectral mixtures [ A ]. First IEEE GRSS Workshop on Hyperspectral Image and Signal Processing [ C ]. Grenoble, France : IEEE,2009 : 85-88.
  • 5Iordache M D, Plaza A, Dias J. On the use of spectral libraries to perform sparse unmixing of hyporspectral data [ A ]. IEEE GRSS Workshop on Hyperspeetral Image and Signal Processing: Evolution in Remote Sensing [ C ]. Reykjavik, Iceland : IEEE, 2010 : 1-4.
  • 6Iordache M D, Plaza A, Dias J. Recent developments in sparse hyperspectral unmixing [ A ]. IEEE International Geoscience and Remote Sensing Symposium [ C ]. Hawaii, USA : IEEE ,2010 : 1281-1284.
  • 7Dias J, Figueiredo M. Ahemating direction algorithms for constrained sparse regression : Application to hyperspectral unmixing [ A ]. First IEEE GRSS Workshop on Hyperspectral Image and Signal Processing[ C ]. Grenoble, France : IEEE ,2009 : 1-4.
  • 8Candies E J, Wakin M, Boyd S. Enhancing sparsity by reweighted 11 minimization [ J ]. Journal of Fourier Analysis and Applications, 2008 ( 14 ) : 877-905.
  • 9Clark R N, Swayze G A, Wise R A, et al. USGS digital spectral library splib06a [ EB/OL ]. http ://speclab. cr. usgs. gov/spectral. lib06/. 2010-06.
  • 10Donoho D, Tsaig Y. Fast solution of 11 -norm minimization problems when the solution may be sparse [ J ]. IEEE Transactions on Information Theory, 2008, 54( 11 ) :4789-4811.

共引文献55

同被引文献27

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部