期刊文献+

Effects of Sodium Nitroprussiate on the Metabolites and Key Enzyme Activities of Carbon-nitrogen Metabolism from Seed Germination to Seedling Period of Cherry Tomato

Effects of Sodium Nitroprussiate on the Metabolites and Key Enzyme Activities of Carbon-nitrogen Metabolism from Seed Germination to Seedling Period of Cherry Tomato
下载PDF
导出
摘要 This study was conducted to elucidate the regulating mechanism of sodium nitroprussiate on seed germination and seedling growth of cherry tomato. After the treatment with different concentrations of sodium nitroprusside, the effects on the metabolites and key enzyme activities in carbon-nitrogen metabolism of cherry tomato cuhivar Zhuyun as an experimental material were investigated. The results showed that from seed germination to seedling period, the contents of starch and total nitrogen decreased, but the contents of soluble sugar, reducing sugar, sucrose and soluble protein increased firstly and then decreased; and free amino acids content increased gradually. Sodium nitroprusside made the contents of starch, sucrose and free amino acids higher than CK. From seed germination to seedling period in cherry tomato, the activities of amylase, glutamine synthetase (GS) and sucrose phosphate synthase (SPS) decreased; the activities of nitrate reductase (NR) and glutamate synthase (GOGAT) increased at first and decreased then; and the CK and the 0.25 mmol/L sodium nitroprusside treatments exhibited de- creased sucrose synthase (SS) activity, and the trend was increasing at first and decreasing then after the treatment with 0.50 and 1.00 mmol/L sodium nitroprus- side. Sodium nitroprusside treatment improved amylase activity; and the carbon-nitrogen ratio of the CK increased at first and decreased then, while the values of other treatments tended to decrease. In addition, sodium nitroprusside did not affect seed germination potential and germination rate, but significantly improved biomass accumulation, root length and height of seedlings. These data suggest that sodium nitroprusside could affect the conversion of starch and sugar accumulation, delay the decomposition of total nitrogen and soluble protein, and achieve the effects of accelerating the accumulation of free amino acids, and promoting seed germination and seedling growth, and 0.50 mmol/L sodium nitroprusside has the best effect. This study was conducted to elucidate the regulating mechanism of sodium nitroprussiate on seed germination and seedling growth of cherry tomato. After the treatment with different concentrations of sodium nitroprusside, the effects on the metabolites and key enzyme activities in carbon-nitrogen metabolism of cherry tomato cuhivar Zhuyun as an experimental material were investigated. The results showed that from seed germination to seedling period, the contents of starch and total nitrogen decreased, but the contents of soluble sugar, reducing sugar, sucrose and soluble protein increased firstly and then decreased; and free amino acids content increased gradually. Sodium nitroprusside made the contents of starch, sucrose and free amino acids higher than CK. From seed germination to seedling period in cherry tomato, the activities of amylase, glutamine synthetase (GS) and sucrose phosphate synthase (SPS) decreased; the activities of nitrate reductase (NR) and glutamate synthase (GOGAT) increased at first and decreased then; and the CK and the 0.25 mmol/L sodium nitroprusside treatments exhibited de- creased sucrose synthase (SS) activity, and the trend was increasing at first and decreasing then after the treatment with 0.50 and 1.00 mmol/L sodium nitroprus- side. Sodium nitroprusside treatment improved amylase activity; and the carbon-nitrogen ratio of the CK increased at first and decreased then, while the values of other treatments tended to decrease. In addition, sodium nitroprusside did not affect seed germination potential and germination rate, but significantly improved biomass accumulation, root length and height of seedlings. These data suggest that sodium nitroprusside could affect the conversion of starch and sugar accumulation, delay the decomposition of total nitrogen and soluble protein, and achieve the effects of accelerating the accumulation of free amino acids, and promoting seed germination and seedling growth, and 0.50 mmol/L sodium nitroprusside has the best effect.
出处 《Agricultural Biotechnology》 CAS 2018年第1期20-25,29,共7页 农业生物技术(英文版)
基金 Supported by National Natural Science Foundation of China(31660559) Scientific Research Project of Kunming University(XJZZ1604) Open Fund of Key Laboratory of Special Biological Resource Development and Utilization of Universities in Yunnan Province(GXKJ201615)
关键词 Cherry tomatoes Sodium nitroprusside Seed germination SEEDLING Carbon and nitrogen metabolism Key enzymes Cherry tomatoes Sodium nitroprusside Seed germination Seedling Carbon and nitrogen metabolism Key enzymes
  • 相关文献

参考文献16

二级参考文献278

共引文献713

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部