期刊文献+

Collision detection of virtual plant based on bounding volume hierarchy: A case study on virtual wheat 被引量:6

Collision detection of virtual plant based on bounding volume hierarchy: A case study on virtual wheat
下载PDF
导出
摘要 Visualization of simulated crop growth and development is of significant interest to crop research and production. This study aims to address the phenomenon of organs cross-drawing by developing a method of collision detection for improving vivid 3D visualizations of virtual wheat crops. First, the triangular data of leaves are generated with the tessellation of non-uniform rational B-splines surfaces. Second, the bounding volumes(BVs) and bounding volume hierarchies(BVHs) of leaves are constructed based on the leaf morphological characteristics and the collision detection of two leaves are performed using the Separating Axis Theorem. Third, the detecting effect of the above method is compared with the methods of traditional BVHs, Axis-Aligned Bounding Box(AABB) tree, and Oriented Bounding Box(OBB) tree. Finally, the BVs of other organs(ear, stem, and leaf sheath) in virtual wheat plant are constructed based on their geometric morphology, and the collision detections are conducted at the organ, individual and population scales. The results indicate that the collision detection method developed in this study can accurately detect collisions between organs, especially at the plant canopy level with high collision frequency. This collision detection-based virtual crop visualization method could reduce the phenomenon of organs cross-drawing effectively and enhance the reality of visualizations. Visualization of simulated crop growth and development is of significant interest to crop research and production. This study aims to address the phenomenon of organs cross-drawing by developing a method of collision detection for improving vivid 3D visualizations of virtual wheat crops. First, the triangular data of leaves are generated with the tessellation of non-uniform rational B-splines surfaces. Second, the bounding volumes(BVs) and bounding volume hierarchies(BVHs) of leaves are constructed based on the leaf morphological characteristics and the collision detection of two leaves are performed using the Separating Axis Theorem. Third, the detecting effect of the above method is compared with the methods of traditional BVHs, Axis-Aligned Bounding Box(AABB) tree, and Oriented Bounding Box(OBB) tree. Finally, the BVs of other organs(ear, stem, and leaf sheath) in virtual wheat plant are constructed based on their geometric morphology, and the collision detections are conducted at the organ, individual and population scales. The results indicate that the collision detection method developed in this study can accurately detect collisions between organs, especially at the plant canopy level with high collision frequency. This collision detection-based virtual crop visualization method could reduce the phenomenon of organs cross-drawing effectively and enhance the reality of visualizations.
出处 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2018年第2期306-314,共9页 农业科学学报(英文版)
基金 supported by the National High-Tech Research and Development Program of China (2013AA102404) the National Science Fund for Distinguished Young Scholars, China (31725020) the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD),China the 111 Project, China (B16026)
关键词 wheat collision detection bounding volume hierarchy virtual plant morphology wheat collision detection bounding volume hierarchy virtual plant morphology
  • 相关文献

参考文献1

二级参考文献2

共引文献3

同被引文献97

引证文献6

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部