期刊文献+

Comparing successful gene knock-in efficiencies of CRISPR/Cas9 with ZFNs and TALENs gene editing systems in bovine and dairy goat fetal fibroblasts 被引量:10

Comparing successful gene knock-in efficiencies of CRISPR/Cas9 with ZFNs and TALENs gene editing systems in bovine and dairy goat fetal fibroblasts
下载PDF
导出
摘要 This study aimed to compare the efficiencies of clustered regulatory interspaced short palindromic repeat(CRISPR)/Cas9-mediated gene knock-ins with zinc finger nucleases(ZFNs) and transcription activator-like effector nucleases(TALENs) in bovine and dairy goat fetal fibroblasts. To test the knock-in efficiency, a set of ZFNs and CRISPR/Cas9 plasmids were designed to edit the bovine myostatin(MSTN) gene at exon 2, while a set of TALENs and CRISPR/Cas9 plasmids were designed for editing the dairy goat β-casein gene at exon 2. Donor plasmids utilizing the ZFNs, TALENs, and CRISPR/Cas9 cutting sites were constructed in theGFP-PGK-Neo R plasmid background, including a 5′ and 3′ homologous arm flanking the genes humanized Fat-1(h Fat-1) or enhanced green fluorescent protein(eGFP). Subsequently, the ZFNs, TALENs, or CRISPR/Cas9 and thehFat-1 or eGFP plasmids were co-transfected by electroporation into bovine and dairy goat fetal fibroblasts. After G418(Geneticin) selection, single cells were obtained by mouth pipetting, flow cytometry or a cell shove. The gene knock-in events were screened by PCR across the homologous arms. The results showed that in bovine fetal fibrobalsts, the efficiencies of ZFNs-mediated eGFP andhFat-1 gene knock-ins were 13.68 and 0%, respectively. The efficiencies of CRISPR/Cas9-mediated eGFP andhFat-1 gene knock-ins were 77.02 and 79.01%, respectively. The eGFP gene knock-in efficiency using CRISPR/Cas9 was about 5.6 times higher than when using the ZFNs gene editing system. Additionally, thehFat-1 gene knock-in was only obtained when using the CRISPR/Cas9 system. The difference of knockin efficiencies between the ZFNs and CRISPR/Cas9 systems were extremely significant(P〈0.01). In the dairy goat fetal fibroblasts, the efficiencies of TALENs-mediated eGFP andhFat-1 gene knock-ins were 32.35 and 26.47%, respectively. Theefficiencies of eGFP and hFat-1 gene knock-ins using CRISPR/Cas9 were 70.37 and 74.29%, respectively. The knock-in efficiencies difference between the TALENs and CRISPR/Cas9 systems were extremely significant(P〈0.01). This study demonstrated that CRISPR/Cas9 was more efficient at gene knock-ins in domesticated animal cells than ZFNs and TALENs. The CRISPR/Cas9 technology offers a new era of precise gene editing in domesticated animal cell lines. This study aimed to compare the efficiencies of clustered regulatory interspaced short palindromic repeat(CRISPR)/Cas9-mediated gene knock-ins with zinc finger nucleases(ZFNs) and transcription activator-like effector nucleases(TALENs) in bovine and dairy goat fetal fibroblasts. To test the knock-in efficiency, a set of ZFNs and CRISPR/Cas9 plasmids were designed to edit the bovine myostatin(MSTN) gene at exon 2, while a set of TALENs and CRISPR/Cas9 plasmids were designed for editing the dairy goat β-casein gene at exon 2. Donor plasmids utilizing the ZFNs, TALENs, and CRISPR/Cas9 cutting sites were constructed in theGFP-PGK-Neo R plasmid background, including a 5′ and 3′ homologous arm flanking the genes humanized Fat-1(h Fat-1) or enhanced green fluorescent protein(eGFP). Subsequently, the ZFNs, TALENs, or CRISPR/Cas9 and thehFat-1 or eGFP plasmids were co-transfected by electroporation into bovine and dairy goat fetal fibroblasts. After G418(Geneticin) selection, single cells were obtained by mouth pipetting, flow cytometry or a cell shove. The gene knock-in events were screened by PCR across the homologous arms. The results showed that in bovine fetal fibrobalsts, the efficiencies of ZFNs-mediated eGFP andhFat-1 gene knock-ins were 13.68 and 0%, respectively. The efficiencies of CRISPR/Cas9-mediated eGFP andhFat-1 gene knock-ins were 77.02 and 79.01%, respectively. The eGFP gene knock-in efficiency using CRISPR/Cas9 was about 5.6 times higher than when using the ZFNs gene editing system. Additionally, thehFat-1 gene knock-in was only obtained when using the CRISPR/Cas9 system. The difference of knockin efficiencies between the ZFNs and CRISPR/Cas9 systems were extremely significant(P〈0.01). In the dairy goat fetal fibroblasts, the efficiencies of TALENs-mediated eGFP andhFat-1 gene knock-ins were 32.35 and 26.47%, respectively. Theefficiencies of eGFP and hFat-1 gene knock-ins using CRISPR/Cas9 were 70.37 and 74.29%, respectively. The knock-in efficiencies difference between the TALENs and CRISPR/Cas9 systems were extremely significant(P〈0.01). This study demonstrated that CRISPR/Cas9 was more efficient at gene knock-ins in domesticated animal cells than ZFNs and TALENs. The CRISPR/Cas9 technology offers a new era of precise gene editing in domesticated animal cell lines.
出处 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2018年第2期406-414,共9页 农业科学学报(英文版)
基金 supported by the National Transgenic Project of China (2016ZX08010001-002) the National Natural Science Foundation of China (81471001) the Inner Mongolia Science and Technology Program, China (201502073) the National 863 Prgram of China (2009AA10Z111)
关键词 myostatin(MSTN) β-casein(CSN2) bovine fetal fibroblasts CRISPR/Cas9 dairy goat fetal fibroblasts eGFP hFat-1 knock-in mutation efficiency TALENs ZFNs myostatin(MSTN) β-casein(CSN2) bovine fetal fibroblasts CRISPR/Cas9 dairy goat fetal fibroblasts eGFP hFat-1 knock-in mutation efficiency TALENs ZFNs
  • 相关文献

参考文献2

二级参考文献4

共引文献68

同被引文献43

引证文献10

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部