期刊文献+

Hybrid Particle Swarm Optimization with Differential Evolution for Numerical and Engineering Optimization 被引量:3

Hybrid Particle Swarm Optimization with Differential Evolution for Numerical and Engineering Optimization
原文传递
导出
摘要 In this paper, a hybrid particle swarm optimization (PSO) algorithm with differential evolution (DE) is proposed for numerical benchmark problems and optimization of active disturbance rejection controller (ADRC) parameters. A chaotic map with greater Lyapunov exponent is introduced into PSO for balancing the exploration and exploitation abilities of the proposed algorithm. A DE operator is used to help PSO jump out of stagnation. Twelve benchmark function tests from CEC2005 and eight real world opti- mization problems from CEC2011 are used to evaluate the performance of the proposed algorithm. The results show that statistically, the proposed hybrid algorithm has performed consistently well compared to other hybrid variants. Moreover, the simulation results on ADRC parameter optimization show that the optimized ADRC has better robustness and adaptability for nonlinear discrete-time systems with time delays. In this paper, a hybrid particle swarm optimization (PSO) algorithm with differential evolution (DE) is proposed for numerical benchmark problems and optimization of active disturbance rejection controller (ADRC) parameters. A chaotic map with greater Lyapunov exponent is introduced into PSO for balancing the exploration and exploitation abilities of the proposed algorithm. A DE operator is used to help PSO jump out of stagnation. Twelve benchmark function tests from CEC2005 and eight real world opti- mization problems from CEC2011 are used to evaluate the performance of the proposed algorithm. The results show that statistically, the proposed hybrid algorithm has performed consistently well compared to other hybrid variants. Moreover, the simulation results on ADRC parameter optimization show that the optimized ADRC has better robustness and adaptability for nonlinear discrete-time systems with time delays.
出处 《International Journal of Automation and computing》 EI CSCD 2018年第1期103-114,共12页 国际自动化与计算杂志(英文版)
基金 supported by National Natural Science Foundation of China(Nos.61174140 and 61203016) Ph.D.Programs Foundation of Ministry of Education of China(No.20110161110035) China Postdoctoral Science Foundation Funded Project(No.2013M540628)
关键词 Particle swarm optimization (PSO) active disturbance rejection control (ADRC) differential evolution algorithm chaoticmap parameter tuning. Particle swarm optimization (PSO), active disturbance rejection control (ADRC), differential evolution algorithm, chaoticmap, parameter tuning.
  • 相关文献

参考文献4

二级参考文献62

  • 1韩京清,王伟.非线性跟踪─微分器[J].系统科学与数学,1994,14(2):177-183. 被引量:411
  • 2韩京清.一类不确定对象的扩张状态观测器[J].控制与决策,1995,10(1):85-88. 被引量:423
  • 3韩京清.非线性状态误差反馈控制律──NLSEF[J].控制与决策,1995,10(3):221-225. 被引量:179
  • 4韩京清,1989年
  • 5陈景良,近代分析数学概要,1987年
  • 6MISRA K B, LJUBOJEV1C M D. Optimal reliability design of a system: A new look [J]. IEEE Transaction on Reliability, 1973, 22(5): 255-258.
  • 7LI D, SUN X L, MCKINNON K. An exact solution method for reliability optimization in complex systems [J]. Annals of Operations Research, 2005, 133(1/4): 129-148.
  • 8BILLIONNET A. Redundancy allocation for series-parallel systems using integer linear programming [J]. IEEE Transaction on Reliability, 2008, 57(3): 507-516.
  • 9AGARWAL M, GUPTA R. Penalty function approach in heuristic algorithms for constrained redundancy reliability optimization [J]. IEEE Transaction on Reliability, 2005, 54(3): 549-558.
  • 10HA C, KUO W. Multi-path approach for reliability-redundancy allocation using a scaling method [J]. Joumal of Heuristics, 2005, 11(3): 201-217.

共引文献1346

同被引文献10

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部