期刊文献+

自平衡立方体机器人动力学建模 被引量:7

Dynamic Modeling of a Self-balancing Cubical Robot
下载PDF
导出
摘要 针对立方体机器人自平衡控制问题,对其以棱边为支点的动力学建模问题进行了研究.以所设计的立方体机器人样机为具体研究对象,分别采用拉格朗日方法和凯恩方法建立起相应的动力学模型,通过比较2种方法的建模结果和数值仿真分析,从理论上验证了所建立模型的正确性.基于建立的模型设计了平衡控制器,并将其应用于立方体机器人样机控制,取得了预期的效果,再次验证所建立模型的正确性.所建立的动力学模型,为进一步研究立方体机器人的平衡控制奠定了基础. Aiming at the problem of self-balancing control of a cubical robot,this paper researched the dynamic modeling of the cubical robot balancing on its edge. Using the prototype of cubical robot built as the subject,the dynamic model was derived with Lagrange method and Kane method. The correctness of the model was verified in theory by comparison of the two methods and numerical simulation. The controller designed based on the mathematical model was used in balance control of the physical cubical robot prototype. The correctness of the model was verified again with the expected effect. This dynamic model can provide a base for further study of balance control of a cubical robot balancing on its corner.
出处 《北京工业大学学报》 CAS CSCD 北大核心 2018年第3期376-381,共6页 Journal of Beijing University of Technology
基金 国家自然科学基金资助项目(61375086) 北京市自然科学基金项目/北京市教育委员会科技计划重点资助项目(KZ201610005010)
关键词 立方体机器人 动力学模型 凯恩方法 拉格朗日方法 cubical robot dynamics model Kane method Lagrange method
  • 相关文献

参考文献2

二级参考文献32

  • 1王田苗,梁建宏.基于理想推进器理论的尾鳍推力与效率估算[J].机械工程学报,2005,41(8):18-23. 被引量:22
  • 2LONG J H, Biomimetic robotics: Self-propelled physical models test hypotheses about the mechanics and evolution of swimming vertebrates[J]. J. Mech. Eng. Sci., 2007,221(10): 1 193-1200.
  • 3ALVARADO P V, YOUCEF T K. Design of machines with compliant bodies for biomimetic locomotion in liquid environments[J]. Journal of DYrlamic Systems, Measurement and Control, 2006, 128: 3-13.
  • 4KORAY K S, GEORGE G A. Dynamic modeling and hydrodynamic performance of biomimetic underwater robot locomotion[J]. Autonomous Robotics, 2002, 13:223-240.
  • 5EUNJUNG K. YOUNGIL Y. Design and dynamic analysis of fish robot: PoTuna[C]// 2004 IEEE International Conference on Robotics and Automation, April 26-May 1, 2004, New Orleans, LA, United States. Piscataway, NJ: IEEE, 2004:4 887-4 892.
  • 6GRAY J. Studies in animal locomotion VI: The propulsive powers of the dolphin[J]. J. Exp. BioL, 1936, 13: 192-199.
  • 7TAYLOR G. Analysis of the swimming of long narrow animals[J]. Proc. R. Soc. Lond. A, 1952, 214: 158-183.
  • 8LIGHTHILL M J. Note on the swimming of slender fish[J]. Journal of Fluid Mechanics, 1960, 9: 305-317.
  • 9WU T Y. Swimming of a waving plate[J]. Journal of Fluid Mechanics, 1961, 10: 321-344.
  • 10CHENG J Y, ZHUANG L X, TONG B G. Analysis of swimming 3-D waving plate[J]. Journal of Fluid Mechanics, 1991, 232: 341-355.

共引文献35

同被引文献38

引证文献7

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部