期刊文献+

基于压缩感知理论的运动声源识别方法研究 被引量:3

Study on the Identification Method of Moving Sound Source Based on Compressive Sensing Theory
下载PDF
导出
摘要 针对于传统的声源识别信号处理过程繁琐复杂问题,提出了一种将压缩感知理论运用到声源识别研究中的方法。根据运动声源的特性研究给出了运动声场的压缩和重建的最佳方法是离散傅里叶变换(DFT)时变信号稀疏化和特征基匹配追踪的方法。通过实验对比分析了运动声场重建的三种不同测试方法即声像仪声源识别、LMS阵列识别以及LMS采集数据进行压缩重构识别,验证了提出方法的可行性。为将来的高速、变速、多点声源的识别研究提供了指导意义。 In view of the complexity of the traditional signal processing of acoustic source identification,a method of applying compressive sensing theory to the research of sound source identification is presented. According to the characteristic of the moving sound source,the best method of the compression and reconstruction of the moving sound field is the Discrete Fourier Transform(DFT). Through the contrast analysis of three different test methods of sound field reconstruction movement,namely,acoustic source identification of acoustic phase instrument,LMS array recognition and LMS acquisition data for compression and reconstruction identification,besides,to verify the feasibility of the proposed method. It provides an instructive view of the identification of the high speed,variable speed and multi-point sound source in the future.
出处 《机械设计与制造》 北大核心 2018年第3期209-211,215,共4页 Machinery Design & Manufacture
基金 国家自然科学基金资助项目(61271387 61401245)
关键词 运动声源 稀疏表示 重构算法 指向性 Moving Sound Source Sparse Representation Reconstruction Algorithm Directivity
  • 相关文献

参考文献3

二级参考文献156

  • 1居鸿宾,钟芳源.旋转体源声辐射的近场分析[J].航空动力学报,1995,10(2):131-134. 被引量:3
  • 2张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 3R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 4Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 5Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 6E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 7E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 8Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 9G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.
  • 10V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09.

共引文献844

同被引文献21

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部