摘要
深度逆向强化学习是机器学习领域的一个新的研究热点,它针对深度强化学习的回报函数难以获取问题,提出了通过专家示例轨迹重构回报函数的方法。首先介绍了3类深度强化学习方法的经典算法;接着阐述了经典的逆向强化学习算法,包括基于学徒学习、最大边际规划、结构化分类和概率模型形式化的方法;然后对深度逆向强化学习的一些前沿方向进行了综述,包括基于最大边际法的深度逆向强化学习、基于深度Q网络的深度逆向强化学习和基于最大熵模型的深度逆向强化学习和示例轨迹非专家情况下的逆向强化学习方法等。最后总结了深度逆向强化学习在算法、理论和应用方面存在的问题和发展方向。
Deep inverse reinforcement learning is a new research hotspot in the field of machine learning. It aims at recovering the reward function of deep reinforcement learning by the experts' example trajectories. This paper systematically introduces three kinds of classic deep reinforcement learning methods. Then inverse reinforcement learning algorithms including apprenticeship learning, max margin plan, structured classification and probability models are described; then,some frontier researches of deep inverse reinforcement learning are reviewed, including the deep max margin plan inverse reinforcement learning, deep inverse reinforcement learning based on DQN and deep maximum entropy inverse reinforcement learning and recovering reward functions from non-expert trajectories etc. Finally, the existing issues and development direction are summarized.
出处
《计算机工程与应用》
CSCD
北大核心
2018年第5期24-35,共12页
Computer Engineering and Applications
基金
国家重点研发计划(No.2016YFC0800606)
中国工程院重点咨询课题(No.2017-XZ-05)
总装备部预研基金(No.9140A06020315JB25081)
江苏省自然科学基金(No.BK20161469
No.BK20150721)
中国博士后基金(No.2015M582786
No.2016T91017)
江苏省重点研发计划(No.BE2015728
No.BE2016904)
关键词
深度学习
强化学习
深度逆向强化学习
deep learning
reinforcement learning
deep inverse reinforcement learning