期刊文献+

线性有限元误差的L^2范数估计及其应用 被引量:2

The L^2 Norm Error Estimate for Linear Element and Its Applications
下载PDF
导出
摘要 基于分片L^2投影的稳定性估计,证明了线性有限元误差和投影误差的等价性.进一步利用分片线性插值的误差展开式,得到了有限元L^2误差的一个误差估计子.结合提出的Hessian重构技术,构造了有限元L^2误差的一个后验误差估计子.数值算例说明了后验误差估计子的可靠性和有效性及相应自适应算法的数值表现. In this paper,we prove that the error of linear finite element approximation and piecewise L^2 polynomial projection are equivelant by applying the stability estimation of the projection operator.Based on the error expansion of piecewise linear interpolation,we show that interpolation error can be used as an a posteriori error estimate that is both reliable and efficient.We further introduce a Hessian recovery technique and the corresponding recovery type a posteriori L^2 norm error estimation.Numerical examples are presented to show the efficiency of the a posteriori error estimator and the performance of the corresponding adaptive finite element method.
出处 《湘潭大学自然科学学报》 CAS 2018年第1期19-23,共5页 Natural Science Journal of Xiangtan University
基金 国家自然科学基金项目(91430213 11671341)
关键词 线性元 L^2投影 后验误差估计 自适应有限元方法 linear finite element L2 projection aposteriori error estimation adaptive finite element method
  • 相关文献

参考文献1

二级参考文献37

  • 1Yunqing Huang,Nianyu Yi.The Superconvergent Cluster Recovery Method[J]. Journal of Scientific Computing . 2010 (3)
  • 2J. Alberty,C. Carstensen,S. A. Funken,R. Klose.Matlab Implementation of the Finite Element Method in Elasticity[J]. Computing . 2002 (3)
  • 3H. Blum,Q. Lin,R. Rannacher.Asymptotic error expansion and Richardson extranpolation for linear finite elements[J]. Numerische Mathematik . 1986 (1)
  • 4NAGA A,ZHANG Z.A Posteriori error estimates based on polynomial preserving recovery. SIAM Journal on Numerical Analysis . 2004
  • 5CAI Z Q,ZHANG S.Recovery-based error estimators for interface problems:conforming linear elements. SIAM Journal on Numerical Analysis . 2009
  • 6BANK R E,SMITH R K.A posteriori error-estimates based on hierarchical bases. SIAM Journal on Numerical Analysis . 1993
  • 7BANK R E.Hierarchical bases and the finite element method. Acta Numerica . 1996
  • 8OVALL J S.Function,gradient,and Hessian recovery using quadratic edge-bump functions. SIAM Journal on Numerical Analysis . 2007
  • 9CARSTENSEN C,FUNKEN S.Fully reliable localised error control in the FEM. SIAM Journal on Scientific Computing . 1999
  • 10ODEN J T,PRUDHOMME S.Goal oriented error estimation and adaptivity for the finite element method. Computers and Mathematics With Applications . 2001

共引文献2

同被引文献12

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部