摘要
针对物流网络中绿色且经济的物流调度问题,提出一种基于混合整数线性规划(MILP)模型和量子粒子群优化(QPSO)算法的物流调度方法 .首先,根据实际情况设定物流网络中的各种元素属性,如制造商、分销商和经销商的能力以及运输方式.然后,构建一个综合考虑交付时间最小化和碳排放量最小化的目标函数,并根据网络属性约束构建一个物流调度的MILP模型.最后,通过一种QPSO算法来求解该MILP模型.在一个汽车销售物流网络上的实验结果表明,提出的方法能够很好地均衡交付时间和碳排放量.
For the issues of the green and economical logistics scheduling problems in logistics network,a logistics scheduling method based on mixed integer linear programming(MILP)model and quantum particle swarm optimization(QPSO)algorithm is proposed.Firstly,various elemental attributes in the logistics network are set according to the actual situation,such as the capabilities of manufacturers,distributors and dealers,and shipping methods.Then,an objective function considering the minimization of delivery time and the minimization of carbon emissions is constructed,and a MILP model of logistics dispatch is constructed according to the network attribute constraints.Finally,the MILP model is solved by a QPSO algorithm.The experimental results on a car sales logistics network show that the proposed method can well balance delivery time and carbon emissions.
出处
《湘潭大学自然科学学报》
CAS
2018年第1期77-81,共5页
Natural Science Journal of Xiangtan University
基金
教育部青年基金项目(17XJC880003)
关键词
物流调度
交付时间
碳排放量
混合整数线性规划
量子粒子群优化
logistics scheduling
delivery time
carbon emissions
mixed integer linear programming
quantum particle swarm optimization