摘要
针对传统替换策略的不足,提出一种基于Q-learning的缓存替换策略。该方法使用马尔科夫博弈模型描述多基站协作替换问题,以降低网络服务延迟为目标,利用分布式Q-learning算法获得Nash均衡点作为最优策略。实验表明,与其他缓存替换策略相比,该方法能够有效降低网路延迟,提升服务质量。
To improve the weakness of traditional replacement policy,this paper proposes a cache replacement policy based on Q-learning.This method uses Markov Game model to describe multiple base station cooperation replacement,for the purpose of reducing the delay of network services,and uses the distributed Q-learning algorithm to obtain Nash equilibrium as the optimal strategy.The experiment shows that this method can reduce network delay effectively and improve service quality compared with other cache replacement policies.
出处
《信息工程大学学报》
2017年第5期526-530,共5页
Journal of Information Engineering University
基金
国家863计划资助项目(2014AA01A701)
国家自然科学基金资助项目(61521003)
科技部支撑计划资助项目(2014BAH30B01)