期刊文献+

基于SDN/NFV构建防火云平台

SDN/NFV based Firewall Cloud Platform
下载PDF
导出
摘要 云WAF是一种基于云模式的Web应用防火墙。作为一种全新的信息安全产品模式,它不仅增强了应用的可用性和安全性,而且提升了网络的总体安全性。随着大数据、物联网、移动互联网的发展,云环境下的安全问题日益突出,而云WAF的应用面临业务急剧增加、多用户高并发连接和高流量管控的突出问题。因此,基于SDN/NFV、机器学习等技术的优势,设计和实现了一种新型防火云平台。该平台具有卓越的功能和性能,能满足现代云计算环境下大规模复杂系统的网络访问控制要求。 Cloud WAF is a Web application firewall based on cloud mode. As a completely-new information security product mode, could WAF enhance the usability and security of applications and improve the overall security of the network. With the development of big data, IoT (Internet of Things) and mobile Internet, cloud-computing security issue becomes increasingly prominent, while the application of cloud WAF(Web application firewall)would face the problems of dramatic increase of business, multi-user high concurrent-connectivity and high flow–control. Based on the advantages of SDN/NFV (Software defined networking/ Network function virtualization), machine learning and other technologies, a novel firewall cloud platform is designed and implemented. The platform has excellent function and performance, and can meet the network-access-control requirements of large-scale complex system in modern cloud computing environment.
出处 《通信技术》 2018年第2期439-444,共6页 Communications Technology
基金 深圳市战略新兴产业发展专项资金项目"基于SDN的IAAS云平台研发"(No.CXZZ20150504110141589)~~
关键词 防火云 软件定义网络 网络功能虚拟化 访问控制 firewall cloud platform software defined networking network function virtualization access control
  • 相关文献

参考文献9

二级参考文献135

  • 1刘晟.浅析高校校园网安全所面临的威胁及对策[J].电脑知识与技术(技术论坛),2005(3):90-91. 被引量:13
  • 2齐蕾.浅谈校园网安全控制策略[J].大众科技,2005,7(4):45-46. 被引量:16
  • 3唐正军,李建华.入侵检测技术[M].清华大学出版社.2006.
  • 4Labrinidis A, Jagadish H V. Challenges and Opportunities with Big Data. Proc of the VLDB Endowment, 2012, 5(12) : 2032-2033.
  • 5Bizer C, Boncz P, Brodie M L, et al. The Meaningful Use of Big Data : Four Perspectives-Four Challenges. ACM SIGMOD Record, 2012, 40(4) : 56-60.
  • 6Wang F Y. A Big-Data Perspective on AI: Newton, Merton, and An- alytics Intelligence. IEEE Intelligent Systems, 2012, 27 (5) : 2-4.
  • 7Simon H A. Why Should Machines Learn?//Michalski R S, Car- bonell J G, Mitchell T M, et al. , eds. Machine Learning: An Arti- ficial Intelligence Approach. Berlin, Germany: Springer, 1983: 25 -37.
  • 8Hart P. The Condensed Nearest Neighbor Rule. IEEE Trans on In- formation Theory, 1968, 14(3) : 515-516.
  • 9Gates G. The Reduced Nearest Neighbor Rule. IEEE Trans on In- formation Theory, 1972, 18(3) : 431-433.
  • 10Brighton H, Mellish C. Advances in Instance Selection for Instance- Based Learning Algorithms. Data Mining and Knowledge Discovery, 2002, 6(2) : 153-172.

共引文献637

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部