期刊文献+

基于量子粒子群优化广义回归神经网络的语音转换方法 被引量:4

Voice conversion based on quantum particle swarm optimization of generalized regression neural network
下载PDF
导出
摘要 针对粒子群算法优化神经网络进行语音转换时容易产生收敛速度慢、早熟的问题,本文采用一种新的量子粒子群算法优化广义回归神经网络的语音转换模型。该量子粒子群通过改变量子比特相位进而改变位置矢量,并利用量子非门进行变异操作。因此首先利用量子粒子群对网络进行优化得到最佳的光滑因子参数,从而建立频谱映射规则。接着,利用频谱参数和基频参数的相关性,对韵律特征基频也进行转换。然后,联立转换后的频谱参数和基频参数,利用STRAIGHT模型合成目标语音。最后,采用主观和客观测评方式进行评价。实验结果表明,与传统粒子群算法优化广义回归神经网络相比,该方法转换后的语音自然度和相似度得到提升,谱失真率下降2.1%。本文方法具有比径向基神经网络、广义回归神经网络、粒子群算法优化广义回归神经网络更好的语音转换性能。 In this paper,a new quantum particle swarm optimization algorithm is used to optimize the voice conversion model of generalized regression neural network in order to solve the problem of slow convergence and premature phenomenon in particle swarm optimization.The quantum particle swarm optimization algorithm changes the position vector by changing the quantum bit phase and uses the quantum non-gate to perform the mutation operation.Therefore,we first use the quantum particle swarm to optimize the network to get the best smooth factor parameters,so as to establish spectrummapping rules.After that, we use the correlation between the spectral parameters and the fundamental frequency parameters to convert the prosodic characteristic fundamental frequency.Then,the STRAIGHT model is used to synthesize the target voice in conjunction with the converted spectral parameters and the fundamental frequency parameters.Finally,we use the subjective and objective evaluation methods to evaluate.The experimental results show that the natural and similarity of the proposed method for the transformed voice are improved and the spectral distortion rate is reduced by 2.1% compared with the traditional particle swarm optimization algorithm.The proposed method has better voice conversion performance than radial basis function neural network,generalized regression neural network and generalized regression neural network optimized by particle swarm optimization.
出处 《液晶与显示》 CAS CSCD 北大核心 2018年第2期165-173,共9页 Chinese Journal of Liquid Crystals and Displays
基金 住房城乡建设部科学技术项目计划(No.2016-R2-045) 陕西省教育厅专项基金(No.2013JK1081) 陕西省科学技术研究发展计划项目(No.CXY1122(2)) 陕西省自然科学基金青年基金(No.2013JQ8003)~~
关键词 语音转换 量子粒子群 广义回归神经网络 量子比特 光滑因子 voice conversion quantum particle swarm optimization generalized regression neural net work quantum bite smooth factor
  • 相关文献

参考文献5

二级参考文献50

  • 1陈炳瑞,冯夏庭.压缩搜索空间与速度范围粒子群优化算法[J].东北大学学报(自然科学版),2005,26(5):488-491. 被引量:20
  • 2Kennedy J,Eberhart R C.Particle swarms optimization[C].Proc.IEEE International Conference on Neural Networks[M].USA:IEEE Press,1995.4:1942-1948.
  • 3van den Bergh F,Engelbrecht A P.Cooperative learning in neural networks using particle swarm optimizers[J].South African Computer Journal,2000,11:84-90.
  • 4Shi Y H,Eberhart R C.A modified particle swarm optimizer[C].IEEE World Congress on Computational Intelligence[M].Anchorage,1998.69-73.
  • 5Lovbjerg M,Rasmussen T K,Krink T.Hybrid particle swarm optimizer with breeding and subpopulations[C].Proc of the 3rd Genetic and Evolutionary Computation Conference[M].Sanfrancisco,2001.469-476.
  • 6Eberhart R C,Shi Y H.Comparing inertia weights and constriction factors in particle swarm optimization[C].Proc 2000 Congress Evolutionary Computation[M].Piscataway:IEEE Press,2000.84-88.
  • 7Hyun K,Kim J H.Quantum-inspired evolutionary algorithm for a class of combinational optimization[J].IEEE Transactions on Evolutionary Computing,2002,6(6):580-593.
  • 8Kennedy J,Eberhart R C.Particle swarm optimization[C] .Proc.of IEEE International Conferenee on Neural Networks,Piscataway:IEEE press,1995:1942-1948.
  • 9Eberhart R C,Dobbins R W,Simpson P K.Computational Intelligence PC Tools[M] .Boston:Academic Press,1996.
  • 10Lee K S. A unit selection approach for voice transformation[J]. Speech Communication, 2014, 60: 30-43.

共引文献89

同被引文献24

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部