期刊文献+

磁性碳纳米管对水中Cr(VI)污染物的去除研究

Removal of Cr(VI) Pollutant by Magnetic Carbon Nanotubes in Water
下载PDF
导出
摘要 主要研究了碳纳米管-铁氧化物磁性复合材料在处理Cr(VI)污染物方面的应用。分别考察了吸附剂用量、吸附时间、溶液温度、Cr(VI)浓度和p H对Cr(VI)吸附率的影响。结果表明:在进行关于吸附剂用量的研究时,磁性复合材料对Cr(VI)的吸附率随着吸附剂用量的增加而增大,在吸附剂投入为2 g/L时,吸附率达到最大72.65%。在15 min之前,磁性复合材料对Cr(VI)的吸附率随时间的增加而增大,在15 min后基本保持不变。此外,吸附率随着温度的上升逐渐增大。Cr(VI)浓度在0~1 mg/L之间,随着Cr(VI)浓度的增加,吸附率也增大,而在1 mg/L之后,Cr(VI)浓度再增加,吸附率反而减小。在p H为4~7的酸性环境中,磁性复合材料对Cr(VI)的吸附率随p H的减小而增大,而在p H为7~9的碱性环境中,p H对吸附率的影响并不是很大。综上所述:在吸附剂用量为2 g/L,吸附时间为15 min,温度为60℃,原水浓度为1 mg/L,p H为4.0的情况下,磁性复合材料对原水中Cr(VI)的吸附率达到最佳的去除效果。 This paper studied the removal of Cr(VI) pollutant by magnetic carbon nanotubes in water.The effect of adsorbent amount, adsorption time, solution temperature, Cr(VI) concentration and p H on Cr(VI) adsorption were investigated. The results showed that: Conducting research on the amount of adsorbent, Cr(VI) adsorption increased with increasing amount of adsorbent. The adsorbent was 2 g/L, the maximum adsorption was 72.65%. Before 15 min, Cr(VI) adsorption increases with the increase of time,basically unchanged after 15 min. The adsorption increases as the temperature rises. When Cr(VI)concentration between 0~1 mg/L, with the increase of Cr(VI) concentration, adsorption also increased, but after 1 mg/L, when Cr(VI) concentration further increased, the absorption is reduced. In the acidic environment of p H 4~7, Cr(VI) adsorption increases with the decrease of p H, whereas at p H 7~9 in an alkaline environment, p H effect on the adsorption is not great. Above all, in the adsorbent usage of 2 g/L,the adsorption time for 15 min, solution temperature was 60 ℃, the raw concentration of 1 mg/L, under the condition of p H 4.0, the adsorption of Cr(VI) can reach the best performance.
作者 黄捷
出处 《浙江化工》 CAS 2018年第2期44-46,54,共4页 Zhejiang Chemical Industry
关键词 碳纳米管-铁氧化物磁性复合材料 CR(VI) 吸附去除 carbon nanutubes-iron oxide magnetic composite Cr(VI) pollutants adsorption
  • 相关文献

参考文献1

二级参考文献12

  • 1[8]Dai H. J., Hafner J. H., Rinzler A. G. et al.. Nature[J], 1996, 384: 147-150
  • 2[9]Planeix J. M., Coustel N., Coq B. et al.. J. Am. Chem. Soc.[J], 1994, 116: 7 935-7 936
  • 3[10]Chen G., Lakshmi B. B., Fisher E. R. et al.. Nature[J], 1998, 393: 346-349
  • 4[11]Ma R. Z., Xu C. L., Wei B. Q. et al.. Materials Research Bulletin[J], 1999, 34: 741-747
  • 5[12]Choi W. W., Chen K. Y.. JAWWA.[J], 1979, 71: 562-570
  • 6[13]Ramos R. L., Ovalle-Turrubiartes J., Sanchez-Castillo M. A.. Carbon[J], 1999, 37: 609-617
  • 7[14]Li Y. H., Wang S., Cao A. et al.. Chem. Phys. Lett.[J], 2001, 350: 412-416
  • 8[1]Iijima S.. Nature[J], 1991, 354: 56-58
  • 9[4]Wanger H. D., Lourie O., Feldman Y. et al.. Appl. Phys. Lett.[J], 1998, 72: 188-190
  • 10[5]Jin L., Bower C., Zhou O.. Appl. Phys. Lett.[J], 1998, 73: 1 197-1 199

共引文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部