摘要
采煤工作面时间序列的瓦斯涌出量对于煤矿安全生产具有重要意义。针对瓦斯涌出量的非线性和不稳定性的特点,基于EMD和Elman神经网络基本原理,建立改进的EMD-Elman时间序列的瓦斯涌出量预测方法,首先EMD分解提取瓦斯涌出量时间序列不同尺度信息,Elman对子模型进行预测,然后,通过加权融合,对加权结果进行PSO算法寻优处理,得出瓦斯涌出量预测结果,并对预测方法进行了应用研究,研究结果表明:工作面瓦斯涌出量预测结果吻合度为95.3%,均方误差为0.0025;改进的EMD-Elman瓦斯涌出预测方法,能够有效显示瓦斯涌出的不稳定性非线性特点,降低不稳定性对预测结果的影响,预测吻合度高达95.2%。
出处
《采矿技术》
2018年第2期42-45,共4页
Mining Technology