期刊文献+

基于压缩感知与矩阵补全技术的WSN数据收集算法 被引量:6

WSN data gathering algorithm based on compressive sensing and matrix completion technique
下载PDF
导出
摘要 WSN无线链路不可靠,分组丢失现象普遍存在,且基于压缩感知(CS)数据收集算法对分组丢失十分敏感。首先,通过实验对分组丢失率和基于CS数据重构精度关系进行定量研究,提出极稀疏块观测矩阵,在降低每轮数据采集能耗的同时,也保持观测矩阵的近似低秩性质。其次,结合矩阵补全(MC)技术与CS技术,提出基于极稀疏块观测矩阵的压缩感知数据收集算法,在一个采集周期内进行数据收集,利用MC技术恢复丢失数据,减少分组丢失对数据收集的影响;利用CS技术重构全网数据,减少数据收集量,降低节点在数据收集时所需能耗,延长网络寿命。仿真分析表明,所提算法在分组丢失率小于50%的情况下能够保证高精度重构全网数据,抵抗不可靠链路。 The unreliable links and packet losing are ubiquitous in WSN. The performance of data collection algorithm based on compressive sensing is sensitive to packet losing. Firstly, the relationship between packet loss rate and CS-based reconstruction precision was analyzed, and the sparsest block measurement (SBM) matrix was formulated to keep the da-ta gathering consumption smallest and make sure the low-rank property of measurements. Then, combined with the ma-trix completion (MC) and compressive sensing (CS), the CS data gathering algorithm based on sparsest block measure-ment matrix (CS-SBM) algorithm was proposed. CS-SBM gathered data in a period and recovered the loss data based on MC to weaken the impact of packet loss on data gathering. CS-SBM reconstructed data based on CS to reduce measure-ment number and energy consumption and prolong the network lifetime. Simulation analysis indicates that the proposed algorithm reconstruct the whole data with high-accuracy under 50% packet loss rate, resisting unreliable links effectively.
出处 《通信学报》 EI CSCD 北大核心 2018年第2期164-173,共10页 Journal on Communications
基金 国家科技重大专项基金资助项目(No.2016zx03001010)~~
关键词 无线传感网 数据收集 压缩感知 不可靠链路 矩阵补全技术 WSN, data gathering, compressive sensing, unreliable link, matrix completion technique
  • 相关文献

参考文献1

二级参考文献19

  • 1RABBAT M, HAUPT J, SINGH A, et al. Decentralized compression and predistribution via randomized gossiping[C]/,q'he 5th Int Cordon Informa- tion Processing in Sensor Networks. New York: ACM, 2006:51-59.
  • 2LUO C, WU F, SUN J, et al. Compressive data gathering for large-scale wireless sensor networks[C] //The 15th Annual Int Conf on Mobile Computing and Networking. New York: ACM, 2009: 145-156.
  • 3WANG J, TANG S, YIN B, et al. Data gathering iri wireless sensor networks through intelligent compressive sensing[C]// IEEE INFO- COM 2012. Piscataway, NJ: IEEE, 2012: 603-611.
  • 4DONOHO D L. Compressed sensing[J]. IEEE Trans on Information Theory, 2006, 52(4): 1289-1306.
  • 5BARANIUK R. Compressive sensing[J]. IEEE Signal Processing Magazine, 2007, 56(4): 4-5.
  • 6OSAMY W, SALIM A, AZIZ A. Efficient compressive sensing based technique for routing in wireless sensor networks[J], lnfocomp Journal of Computer Science, 2013, 12(1): 1-9.
  • 7LUO C, WU F, SUN J, et al. Efficient measurement generation and pervasive sparsity for compressive data gathering[J]. IEEE Trans on Wireless Communications, 2010, 9(12): 3728-3738.
  • 8LUO J, XIANG L, ROSENBERG C. Does compressed sensing im- prove the througlaput of wireless sensor networks?[C]//IEEE hat Conf on Communications (ICC 2010). New York: IEEE Communications Society, 2010: 1-6.
  • 9WU X, XIONG Y, HUANG W, et al. An efficient compressive data gathering routing scheme for large-scale wireless sensor networks[J]. Computers & Electrical Engineering, 2013, 39(6): 1935-1946.
  • 10AKYILDIZ I F, SU W, SANKARASUBRAMANIAM Y, et al. Wire- less sensor networks: a survey[J]. Computer Networks, 2002, 38(4): 393-422.

共引文献11

同被引文献53

引证文献6

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部