期刊文献+

基于模糊规划的无线传感器网络节点选择方法 被引量:3

A Sensor Node Selection Method Based on Fuzzy Programming in Wireless Sensor Networks
下载PDF
导出
摘要 针对无线传感器网络区域重构问题,提出了一种新的基于模糊规划算法的传感器选择方法。算法利用反距离加权插值法对插值点的数据进行预测,并且使用容斥原理计算每个节点的正常工作概率。以传感器正常工作概率,误差精度为约束条件,以传感器数量最少化为目标函数,求解0-1整数规划。进一步,考虑误差阈值和工作概率模糊的情况,将节点选择问题公式化为模糊规划求解。利用传感器温度数据对0-1整数规划和模糊规划算法进行分析评估,结果证明模糊规划算法在相同约束情况下,相较于0-1整数规划约能减少35%的传感器节点数量。 This paper presents a novel fuzzy-programming based sensor selection approach for the field reconstruction in wireless sensor networks. The information of the interpolation point is predicted by using the inverse distance weighted interpolation method and the normal operating probability of each node is computed based on the principle of inclusion-exclusion. Then,the minimal number of the required sensor nodes is computed by the utilization of the 0-1 integer programming to achieve the requirements of normal operating probability,accuracy of each node.What's more,the fuzzy-programming is used to compute the required sensor number according to the error threshold and the fuzzy operating probability. We evaluate the 0-1 integer programming and fuzzy-programming based on the temperature sensor data. The results show that the fuzzy programming algorithm can reduce the number of sensor nodes by about 35% compared with 0-1 integer programming under the same constraint.
出处 《电子科技》 2018年第3期32-35,共4页 Electronic Science and Technology
基金 国家自然科学基金(61370087) 浙江省科技项目(2013E60005 2014C01044)
关键词 传感器节点选择 误差精度 工作概率 0-1整数规划 模糊规划 sensor node selection error accuracy working probability 0-1 integer programming fuzzy programming
  • 相关文献

参考文献2

二级参考文献12

  • 1崔莉,鞠海玲,苗勇,李天璞,刘巍,赵泽.无线传感器网络研究进展[J].计算机研究与发展,2005,42(1):163-174. 被引量:730
  • 2GAO Deyun, ZHANG Linjuan, WANG Cheng, Energy saving with node sleep and power control mechanisms for wireless sensor networks [ J ]. Elsevier Journal of China Universties of Posts and Telecommunications ,2011,18 ( 1 ) :49 - 59.
  • 3PAOLO M, JI~RI~MIE L. Energy - efficient mobile target de- tection in wireless sensor networks with random node deploy- ment and partial coverage [ J ]. Pervasive and Mobile Compu- ting,2013,11 (2) :611 -732.
  • 4WANG Shunsheng, YAN Kuoqin, et al An integrated intru- sion detection system for cluster - based wireless sensor net- works [ J ]. Expert Systems with Applications, 2011,38 ( 6 ) : 15234 - 15243.
  • 5YANMAZ E, GUCLU H. Stationary and mobile target detec- tion using mobile wireless sensor networks [ C ]. San Diego, CA : Proc. of 28th IEEE Conf. on Computer Communications, INFOCOM 10,2010.
  • 6PAOLO M ,JEREMIE L,VINCENT G,et al. Engineering en- ergy - efficient target detection applications in wireless sensor networks [C]. Mannheim, Germany: Proc. 8'h IEEE Int. Conf. on Pervasive Computing and Communications, Per Com 2010,2010:31 -39.
  • 7LOUKAS L,RADHA P, JAMES A R. Analytic evaluation of target detection in heterogeneous wireless sensor networks [ J ]. Transactions on Sensor Networks ,2009,5 (2) : 1 - 38.
  • 8CAO Q, YAN T, STANKOVIC J A, et al. Analysis of target de- tection performance for wireless sensor networks [ C ]. Marina del Rey, CA : Proc. Of First IEEE Conf. on Distributed Compu- ting in Sensor Systems, DCOSS 2005,2005:276 - 292.
  • 9TING Y. Analysis approaches for predicting performance of wireless sensor networks [ D ]. VA, Advisor: Charlottesville, Stankovic, 2006.
  • 10LIN Jianyong, XIAO Wendong, LEWIS F L, et al. Wendong xiao energy - efficient distributed adaptive multisens or scheduling for target tracking in wireless sensor networks [ J]. IEEE Transaction on Instrumention and Measurement, 2009,58(6) :1886 - 1889.

共引文献6

同被引文献23

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部