期刊文献+

基于压缩感知的阅卷系统手写汉字识别算法 被引量:2

Handwritten Chinese Character Recognition Algorithm Based on Compressed Sensing
下载PDF
导出
摘要 针对阅卷系统中手写汉字识别率和识别精度低的问题,文中提出一种基于压缩感知理论的阅卷系统手写汉字识别算法。该算法首先对阅卷系统手写汉字图像进行随机采样得到其特征;然后对其进行稀疏表示,并最小化其l1范数以得到样本的稀疏解;最后利用该稀疏解的系数判别测试样本的类别。该方法用对信号的随机采样替代了传统的特征提取方法,简化了算法的实现过程,同时用现有的训练样本组成训练字典,避免了复杂的训练过程。该算法在手写汉字数据库ETL9B上的识别率达到99.1%。 In view of the low recognition rate and recognition accuracy of handwritten Chinese character in marking system,a handwritten Chinese character recognition algorithm based on compressed sensing theory was proposed. The algorithm first randomly sampled the handwritten Chinese character in the marking system,and got its features. Then,it made sparse representation and minimized its l1 norm to get the sparse solution of the sample. Finally,the obtained sparse coefficient was used to identify the categories of the test samples. This method replaced the traditional method of feature extraction with random sampling of signals,which simplified the realization process of the algorithm. At the same time,with the usage of training dictionary formed by the existing training samples,the complicated training process was avoided. Study results showed that the recognition rate of the algorithm in handwritten Chinese character database ETL9 B reached 99. 1%.
作者 郑昊辰 姜维
出处 《电子科技》 2018年第3期75-77,80,共4页 Electronic Science and Technology
基金 国家自然科学基金(61601184)
关键词 手写汉字识别 压缩感知 稀疏表示 l1范数最小化 观测矩阵 信号重构 handwritten Chinese character recognition compressed sensing sparse re-presentations l1-minimization the observation matrix signal reconstruction
  • 相关文献

参考文献7

二级参考文献149

  • 1刘浩,尹忠科,王建英.正交匹配跟踪(OMP)算法的收敛性研究[J].微计算机信息,2008,24(3):209-210. 被引量:7
  • 2张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 3Henri Maitre[法].合成孔径雷达图像处理.北京:电子工业出版社,2005
  • 4R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 5Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 6Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 7E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 8E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 9Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 10G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.

共引文献804

同被引文献16

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部