期刊文献+

多因素对双驱进给系统不同步误差影响 被引量:1

Influence of Multi-factors on the Non-synchronous Errors of Dual-driving Feed System
下载PDF
导出
摘要 为研究立式加工中心双驱进给系统结构参数对双轴不同步误差影响规律,以立式加工中心KSMC1250双驱进给系统为研究对象,通过对双驱进给系统动力学分析,建立双驱进给系统不同步误差数学模型,该模型考虑丝杠导轨间距、摩擦等因素;建立动态仿真模型,分析双驱进给系统结构参数对双轴不同步误差的影响。结果表明,在数控机床双驱进给系统结构设计时,应尽量增大丝杠导轨间距,主轴箱部件重心的偏心参数尽量小,且减小主轴箱部件质量,以减小两轴不同步误差,从而提高数控机床加工精度。研究结果为数控机床双驱进给系统结构设计先进控制策略提供参考。 In order to study the influence lawof the dual-driving feed system structure parameters on two axial non-synchronous errors,according to the vertical machine center KSMC1250 Y axis dual-driving feed system as the research object,based on dynamics analysis of the dual-driving feed system,the mode of the dual-driving feed system was established,it considered the lead screwspacing,frictions and other factors,the paper established simulation mode of the dual-driving feed system,it analyzed the influence of structure parameters on the two axial non-synchronous errors. The results showed that the structure design of NC machine dual-driving feed system should try to increase the distance of the lead screwand the guide,the eccentricity of the center of gravity of the spindle box components is as small as possible,and reduce the spindle box parts quality. That reduce the non-synchronous errors and improve the NC machine tools machining precision. The results provide a reference for the advanced control strategy and structure design of the dual-driving feed system of NC machine.
出处 《组合机床与自动化加工技术》 北大核心 2018年第2期76-80,共5页 Modular Machine Tool & Automatic Manufacturing Technique
基金 国家"高档数控机床与基础制造装备"科技重大专项(2012ZX04005-021)
关键词 立式加工中心 双驱进给系统 不同步误差 丝杠导轨间距 vertical machine center dual-driving feed system non-synchronous errors distance of the lead screw and the guide
  • 相关文献

参考文献6

二级参考文献47

  • 1吴南星,胡如夫,孙庆鸿.数控车床丝杠进给系统刚度对定位精度的影响[J].中国工程科学,2004,6(9):46-49. 被引量:31
  • 2黄艳,李家霁,于东,彭健钧.CNC系统S型曲线加减速算法的设计与实现[J].制造技术与机床,2005(3):55-59. 被引量:41
  • 3王培功,彭伟,翁泽宇.数控机床进给系统的动态优化设计[J].机械设计与制造,2005(8):101-103. 被引量:6
  • 4Kripa K Varanasi, Samir A Nayfeh. The dynamics of lead-screw drives: low-order modeling and experiments [ J]. ASME Journal of Dynamic Systems, Measurement, and Control, 2004, 126(2) : 388 - 395.
  • 5Bliman P A, Sorine M. Friction modeling by hysteresis operators, application to Dahl, sticktion, and Stribeck effects[ C]// Proc. Conf. Models of Hysteresis, Trento, Italy, 1991.
  • 6Thomen J J. Using the fast vibrations to quench friction-induced oscillations [ J]. Journal of Sound and Vibration, 1999, 228(5) : 1 079 -1 102.
  • 7Satt- R, Tsutsumi M. Friction compensator for feed drive systems consisting of ball screw and linear ball guide [ C ] // Proceedings of the 35th International Matador Conference, 2007.
  • 8Tarng Y S, Kao J Y, Lin Y S. Identification and compensation for backlash on the contouring accuracy of CNC machining centres [ J ]. The International Journal of Advanced Manufacturing Technology, 1997, 13 (2) : 77 - 85.
  • 9Armstrong B, Pierre Dupont, C Canudas de Wit. A survey of models, analysis tools and compensation methods for the control of machines with friction[J]. Automatica, 1994, 30(7) : 1 083 - 1 138.
  • 10Ryuta Sato, Masaomi Tsutsumi. Mathematical model of feed systems consisting of AC servo motor and linear ball guide[ J]. Journal of the Japan Society for Precision Engineering, 2005, 71 (5) : 633 -638.

共引文献53

同被引文献10

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部