期刊文献+

基于改进三分量模型的全极化SAR图像分类 被引量:4

Classification of fully polarimetric SAR image based on the improved three-component scattering model
下载PDF
导出
摘要 基于改进三分量散射模型提出一种全极化合成孔径雷达(SAR)图像非监督分类方法。运用改进三分量分解模型解决体散射过高估计和负功率像素问题,提出类别重估步骤解决Wishart迭代聚类使聚类中心发生迁移的问题。首先对极化相干矩阵进行去定向操作,将各个像素的定向角旋转为0°;然后利用改进三分量分解模型将目标分解为平面散射、二次散射和体散射3种成分;接着利用3种散射功率计算功率散射熵,根据散射熵和3种散射成分的功率进行初步分类,利用Wishart迭代聚类优化分类结果;最后对Wishart聚类的结果进行类别重估,实现极化SAR图像的非监督分类。结果表明,本文算法的物理意义明确,分类结果易与实际地物相结合,测试区域的总体分类精度为98.6%,Kappa系数为0.973。 A polarimetric SAR image classification method based on the improved three-component scattering model[1]is proposed.First,the method performs a deorientation operation on the polarization coherent matrix,and the orientation angle of each pixel is rotated to 0 degrees.Then,the improved three-component scattering model is used to decompose the target into surface scattering,double-bounce scattering,and volume scattering.Then the power scatter entropy is calculated by using the three scattering powers.According to the scattering entropy and the power of the three scattering components,an initial classification is made.Then,using Wishart iterative clustering to optimize the classification results.Finally,the results of Wishart clustering are reassessed to achieve unsupervised classification of polarimetric SAR images.The results show that the algorithm has a clear physical meaning and the classification result is easy to be combined with the actual features.The overall classification accuracy is 98.6% and the Kappa coefficient is 0.973.
出处 《电子测量技术》 2017年第12期220-227,共8页 Electronic Measurement Technology
关键词 极化SAR 分类 极化分解 去定向 散射熵 PolSAR classificatiom polarization decomposition deorientation scattering entropy
  • 相关文献

参考文献9

二级参考文献109

  • 1吴樊,王超,张红.基于纹理特征的高分辨率SAR影像居民区提取[J].遥感技术与应用,2005,20(1):148-152. 被引量:33
  • 2陈富龙,张红,王超.SAR变化检测技术发展综述[J].遥感技术与应用,2007,22(1):109-115. 被引量:21
  • 3Rignot E, Chellappa R. Segmentation of polarimetric synthetic aperture radar data[ J]. IEEE Transactions on Image Procesg. 1992, 1 (3) : 281 - 300.
  • 4Lee J S, Grunes M R. Classification of multi-look polarimetric SAR imagery based on complex Wishart distribution [J]. International Journal of Remote Seng. 1994, 15(11) : 2299 - 2311.
  • 5Lee J S, Hoppel K W, Mango S A, et al. Intensity and phase statistics of multilook polarimetric and interferometrlc SAR imagery [J]. IEEE Transactions on Geoscience and Remote Seng. 1994, 32(5):1017 - 1028.
  • 6Novak L M, Burl M C. Studies of target detection algorithms that use polarimetric radar data [ J ]. IEEE Transactions on Aerospace and Electronic Systems. 1989, AES25(2): 150-165.
  • 7Lee J S, Schuler D L, Lang R H, et al. K-distribution for multi-look processed polarimetric SAR imagery [ C ]. In Proc, IGARSS' 94, Pasadena, CA, USA. 1994: 2179-2181.
  • 8Freitas C C, Frery A C, Correia A H. The polarimetric G distribution for SAR data analysis[J] . Envimnmetrics. 2005, 16(1) : 13 -31
  • 9Freu, A C, Muller H, Yanasse C C F, et al. A model for extremely heterogeneous clutter[J]. IEEE Transactions on Geoscience and Remote Seng. 1997, 35(3) : 648 - 659.
  • 10Beaulieu J, Touzi R. Segmentation of textured scenes ug polarimetric SARs[C]. In IGARSS'03, Toulouse, France, 2003: 446-448.

共引文献96

同被引文献43

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部