摘要
借助于首次积分构造高维的空间异宿轨道,利用指数二分法的一些性质和Fredholm交换引理,在求解高阶边界函数的同时确定了转移点t~*.利用边界函数法构造形式渐近解,用k+σ交换引理证明了高维吉洪诺夫系统阶梯状空间对照结构解的存在性和形式渐近解的一致有效性.最后举例验证本文的结果.
By means of the first integral method, the author finds a high-dimensional heteroclinic orbit in a fast phase space. He uses the properties of exponential dichotomies and the Fredholm alternatives to determine the internal transition time t^*. Using the method of boundary function, he constructs the formal asymptotic solution. Using the method of k+σ changing lemma, the existence of a step-type contrast structure for high-dimensional Tikhonov system with boundary conditions is shown and the asymptotic solution is proved to be uniformly effective in the whole interval. Finally, an example is given to demonstrate the effectiveness of the result.
出处
《数学年刊(A辑)》
CSCD
北大核心
2017年第4期433-446,共14页
Chinese Annals of Mathematics
基金
国家自然科学基金(No.11501236)的资助
关键词
空间对照结构
奇异摄动
渐近展开
边界函数
Contrast structure, Singular perturbation, Asymptotic expansion,Boundary function