期刊文献+

具有边值条件的高维吉洪诺夫系统的阶梯状空间对照结构 被引量:1

The Step-Type Contrast Structure for High-Dimensional Tikhonov System with Boundary Conditions
下载PDF
导出
摘要 借助于首次积分构造高维的空间异宿轨道,利用指数二分法的一些性质和Fredholm交换引理,在求解高阶边界函数的同时确定了转移点t~*.利用边界函数法构造形式渐近解,用k+σ交换引理证明了高维吉洪诺夫系统阶梯状空间对照结构解的存在性和形式渐近解的一致有效性.最后举例验证本文的结果. By means of the first integral method, the author finds a high-dimensional heteroclinic orbit in a fast phase space. He uses the properties of exponential dichotomies and the Fredholm alternatives to determine the internal transition time t^*. Using the method of boundary function, he constructs the formal asymptotic solution. Using the method of k+σ changing lemma, the existence of a step-type contrast structure for high-dimensional Tikhonov system with boundary conditions is shown and the asymptotic solution is proved to be uniformly effective in the whole interval. Finally, an example is given to demonstrate the effectiveness of the result.
作者 王爱峰
出处 《数学年刊(A辑)》 CSCD 北大核心 2017年第4期433-446,共14页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.11501236)的资助
关键词 空间对照结构 奇异摄动 渐近展开 边界函数 Contrast structure, Singular perturbation, Asymptotic expansion,Boundary function
  • 相关文献

参考文献2

二级参考文献26

  • 1倪明康.具有空间对照结构渐近解的构造(Ⅰ)[J].华东师范大学学报(自然科学版),1993(1):1-11. 被引量:2
  • 2Niegoli G,Plirogen E.在非均匀系统中自组织化过程.莫斯科:莫斯科和平出版社,1973.
  • 3Romanovshge U M, Sjteganov M B, Chronovshge D C.数学的生物物理.莫斯科:莫斯科科学出版社,1984.
  • 4Vasileva A B. On contrast steplike structure for a system of singularly perturbed equation. Zh Vychisl Mat Mat Fiz, 1994, 34(10): 1401-1411.
  • 5Vasileva A B. Contrast structure of step type for a singularly perturbed quasilinea second order differential equation. Zh Vychisl Mat Mat Fiz, 1995, 35(4): 411-418.
  • 6Vasileva A B, Omel'chenko O E. Contrast structures of step type for a singularly perturbed elliplic equation in an annulus. Zh Vychisl Mat Fiz, 2000, 40(1): 118-130.
  • 7ButuzovVF VasilevaAB.具有空间对照结构的渐近解[J].数学评论,1987,42(6):831-841.
  • 8Vasileva A B, Butuzov V F, Kalachev L. The Boundary Function Method for Singular Perturbation Problems. Philadelphia: SIAM, 1995.
  • 9Vasileva A B, Butuzov V F. Asymptotic Expansions of Singularly Perturbed Differential Equations. Moscow: Nauka, 1973.
  • 10Butuzov V F, Vasil'eva A B. Asymptotic Expansions of The Singularly Perturbed Equations. Moscow: Nauka, 1973.

共引文献6

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部