期刊文献+

模型替代方法在优化设计中的应用 被引量:1

Comparison of different metamodeling methods for optimization design
下载PDF
导出
摘要 在优化设计问题中,常常会遇到目标响应与设计变量之间具有隐式函数关系的情况.针对此类问题,模型替代方法可以通过寻找输入参数和输出响应之间的转换关系来替代真实未知的目标函数.考虑了响应面法(RSM)、Kriging模型、径向基函数(RBF)神经网络和高阶模型替代法(HDMR)等常见的模型替代方法,对它们的原理、优缺点进行了对比分析.对优化算法进行了改进,提出了截断多初始点搜索优化算法,以期尽可能全面地搜索其全局最优点,为结构设计提供全面的指导. For the structural optimization design,the relationship between the objective function and design variables is a high nonlinear,and high dimensional implicit function.How to cope with these cases?Metamodeling methods can be used to capture the association patterns between input variables and output response.The response surface method(RSM),kriging model,radial basis function(RBF)based neural network and high dimensional model representations(HDMR),are presented,the effectiveness and versatility of those methods are identified by several numerical examples.Metamodeling methods are proposed to apply for optimization design.The optimization algorithm is developed to search all the global minimums by selected multiple initial points.Thus it can provide the guidance for structural design.
出处 《中国工程机械学报》 北大核心 2017年第2期119-124,共6页 Chinese Journal of Construction Machinery
基金 国家自然科学基金重点资助项目(NSFC51308459) 中央高校基本科研业务费资助项目(310201401JCQ01014 3102015BJ(II)CG009)
关键词 模型替代 径向基函数(RBF)神经网络 KRIGING模型 高阶模型替代法(HDMR) 响应面法(RSM) metamodeling method radial basis function(RBF)based neural network kriging model high dimensional model representations(HDMR) response surface method(RSM)
  • 相关文献

参考文献1

二级参考文献8

  • 1MATHERTON.Principles of geo-statistics[J].Economic Geology,1963,58:1246-1266.
  • 2GIUNTA A A,WATSON L T.A comparison of approximation modeling techniques:polynomial vs.Interpolating models[R].AIAA-98-4758.
  • 3SIMPSON T W.Comparison of response surface and kriging models in the multidisciplinary design of an aerospike nozzle[R].NASA/CR-1998-206935,ICASE Report No.98-16.
  • 4LUCIFREDI A,MAZZIERI C,ROSSI M.Applica-tion of multi-regressive linear models,Dynamic kriging models and neural network models to predictive maintenance of hydroelectric power systems[J].Mechanical Systems and Signal Processing,2000,14(3):471-494.
  • 5COSTA J P,PRONZATO L,THIERRY E.A com-parison between kriging and radial basis function networks for nonlinear prediction[A].Dans Proc.NSIP'99[C].Antalya,June 1999.
  • 6WELCH W J,BUCK R J,SACKS J.Predicting and computer experiments[J].Technometrics,1992,34(1):15-25.
  • 7WELCH W J,MITCHELL T J,[KG*8]WYNN H P.[KG*8]De-sign and analysis of computer experiments[J].Statistics Science,1989,4(4):409-435.
  • 8KOEHLER J R,OWEN A B.Computer Experim-ents[A].Handbook of Statistics[M].Elsevier Science.New York,1996:261-308.

共引文献44

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部