期刊文献+

基于共振稀疏分解的滚动轴承早期微弱故障诊断 被引量:7

Fault diagnosis of rolling bearing's early weak fault based on resonance sparse decomposition
下载PDF
导出
摘要 传统方法很难对滚动轴承的早期微弱故障进行有效诊断.共振稀疏分解是一种基于多字典库的稀疏分解方法,可以同时分解出滚动轴承故障信号中的瞬态冲击成分及其持续震荡成分(工频及其谐频成分).该方法在对滚动轴承早期微弱故障信号进行自适应滤波降噪(采用Ensemble Empirical Mode Decomposition,EEMD方法)基础上,对处理后的信号进行共振稀疏分解分析,分别构建高、低品质因子小波基函数字典库,并利用形态学分析方法建立信号稀疏表示的目标函数,进而实现对滚动轴承发生故障时具有低品质因子的瞬态故障成分及其他持续振荡高品质因子噪声成分的成功分离.对分离得到的低品质因子信号成分进行包络解调分析,进而得到较好的故障提取特征结果.通过实验验证了所述方法的有效性. The traditional signal processing method is very hard to diagnose the rolling bearing'early stage weak fault successfully.The resonance sparse decomposition is a relative new signal processing method based on multiple dictionaries,and it can separate the high Q-factor transient impact component and the low Q-factor sustained oscillation component contained in the rolling bearing fault vibration signal.The vibration signal of rolling bearing'early weak fault is filtered by the ensemble empirical mode decomposition(EEMD)firstly,then the filtered signal is handled by the resonance sparse decomposition method:Construct the high Q-factor and low Q-factor wavelet base functions dictionaries to match the high Q-factor transient impact component and the low Q-factor sustained oscillation component respectively,then apply envelope demodulation spectrum method to the obtained low Q-factor component and better fault feature result is extracted.The effectiveness of the proposed method is verified through experiment.
作者 张勇
出处 《中国工程机械学报》 北大核心 2017年第2期182-188,共7页 Chinese Journal of Construction Machinery
基金 河南省高等学校精密制造技术与工程重点学科开放实验室开放基金资助项目(PMTE201302A)
关键词 集成经验模态分解(EEMD) 共振稀疏分解 滚动轴承 微弱故障 ensemble empirical mode decomposition (EEMD) resonance sparse decompositon rolling bearing early weak fault
  • 相关文献

参考文献1

二级参考文献10

  • 1MING Y, CHEN J, DONG G M. Weak fault featureextraction of rolling bearing based on cyclic Wiener filterand envelope spectrum[J]. Mechanical System and SignalProcessing,2011, 25: 1773-1785.
  • 2QIU H, JAYL, LIN J? et al. Wavelet filter-based weaksignature detection method and its application on rollingbearing element bearing prognosdcs[J]. Journal of SoundandWjration, 2006,289: 1066-1090.
  • 3BIN G F, GAO J J, LI X J. Early fault diagnosis ofrotating machinery based on wavelet packets-empiricalmode decomposition feature extraction and neuralnetwoik[J]. Mechanical System and Signal Processing,2012,27: 696-711.
  • 4WALDEN A T_ Non-Gaussian reflectivity, entropy anddeconvolution[J]. Geophys, 1985,50(12): 2862-2888.
  • 5WIGGINS R A. Minimum entropy deconvolution,geophys[J]. Exploration,1978, 16: 21-35.
  • 6ANTONI J,BONNARDOT F, RAAD A. Cyclostationarymodeling of rotating machine vibration signals[J].Mechanical System and Signal Processings 2004, 18(6):1285-1314.
  • 7RANDALL R B, ANTONI J, CHOBSAARD S. Therelationship between spectral correlation and envelopewlysis in the diagnostics of beaiing faults and othercyclostationaiy machine signals[J]. Mechanical Systemsand Signal Processing, 2001,15(5): 945-962.
  • 8曾庆虎,邱静,刘冠军,张勇.基于小波相关滤波法的滚动轴承早期故障诊断方法研究[J].机械科学与技术,2008,27(1):114-118. 被引量:17
  • 9崔玲丽,康晨晖,胥永刚,高立新.滚动轴承早期冲击性故障特征提取的综合算法研究[J].仪器仪表学报,2010,31(11):2422-2427. 被引量:28
  • 10郑海波,陈心昭,李志远.基追踪降噪及在齿轮故障诊断中的应用[J].振动.测试与诊断,2003,23(2):128-130. 被引量:4

共引文献139

同被引文献138

引证文献7

二级引证文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部