摘要
根据非负不可约矩阵谱半径(Perron根)的相关性质,得到其Perron根的一个新下界,证明了当矩阵对称时新下界较经典下界更优,数值算例进一步验证了其有效性。
The bound for the Perron root of nonnegative matrices is discussed. A lower bound is obtained for the Perron root of nonnegative matrices. It is proved that the new lower bound is better than the classical lower bound when the matrix is symmetric. Some numerical examples are proposed at last.
出处
《安庆师范大学学报(自然科学版)》
2017年第4期24-25,共2页
Journal of Anqing Normal University(Natural Science Edition)
基金
四川省教育厅自然科学基金(16ZB0393)
关键词
非负矩阵
谱半径
PERRON根
下界
nonnegative matrices
spectral radius
Perron root
lower bound