期刊文献+

非负不可约矩阵Perron根的一个下界

A lower bound for Perron root of irreducible nonnegative matrices
下载PDF
导出
摘要 根据非负不可约矩阵谱半径(Perron根)的相关性质,得到其Perron根的一个新下界,证明了当矩阵对称时新下界较经典下界更优,数值算例进一步验证了其有效性。 The bound for the Perron root of nonnegative matrices is discussed. A lower bound is obtained for the Perron root of nonnegative matrices. It is proved that the new lower bound is better than the classical lower bound when the matrix is symmetric. Some numerical examples are proposed at last.
作者 廖平 王龙
出处 《安庆师范大学学报(自然科学版)》 2017年第4期24-25,共2页 Journal of Anqing Normal University(Natural Science Edition)
基金 四川省教育厅自然科学基金(16ZB0393)
关键词 非负矩阵 谱半径 PERRON根 下界 nonnegative matrices spectral radius Perron root lower bound
  • 相关文献

参考文献4

二级参考文献18

  • 1胥兰,黄廷祝.非负矩阵Perron根的界[J].重庆工商大学学报(自然科学版),2005,22(5):428-430. 被引量:2
  • 2秦霁,黄廷祝.非负矩阵Perron根的下界[J].工程数学学报,2007,24(3):559-562. 被引量:5
  • 3H.Minc 杨尚骏译.非负矩阵[M].辽宁教育出版社,1991..
  • 4H.威尔金森 石钟慈等(译).代数特征值问题[M].科学出版社,1987..
  • 5Kolotilina L YU. Lower bounds for the Perron root of a nonnegative matrix. Linear Algebra and its Applications, 1993, 180: 133-151.
  • 6Daniel B. Szyld. A sequence of lower bounds for the spectral radius of nonnegative matrices. Linear Algebra and its Applications, 1994, 174: 239-242.
  • 7Tomas Szulc. A lower bound for the Perron root of a nonnegative matrix Ⅰ. Linear Algebra and its Applications, 1988, 101: 1814186.
  • 8Tomas Szulc. A lower bound for the Perron root of a nonnegative matrix Ⅱ. Linear Algebra and its Applications, 1989, 112: 19-27.
  • 9Minc H. Nonnegative Matrices[M]. Wiley, New York, 1988, 11-19, 24-36.
  • 10Brauer A, Gentry I C. Bounds for the greastest characteristic root of an irreducible nonnegative matrix[J]. Linear Algebra and its Application, 1974, 8:105-107.

共引文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部