期刊文献+

低碳定位——车辆路径问题 被引量:19

Location and routing problem with minimizing carbon
下载PDF
导出
摘要 为降低物流配送过程中车辆的碳排放量,从低碳环保角度出发,建立以车辆碳排放量为函数目标的低碳定位—车辆路径问题数学模型,并采用量子进化算法结合局部搜索算法对模型进行求解。通过对比不同算法求解的结果,证明量子进化算法能有效的求解定位—路径问题模型。继而用量子进化算法求解低碳定位—车辆路径模型,在不同条件下计算车辆排放量、路径值与运行成本,探讨配送中心碳排放、配送路径对车辆碳排放的影响。采用数据比较的方法分析计算结果,证明了低碳定位—车辆路径数学模型能有效降低配送过程中的碳排放量,但总体成本将会增加。 To reduce the carbon emission of vehicles,the location-routing problem model by taking minimum carbon emission as objective was built,which was solved by Quantum Evolutionary Algorithm(QEA)with local search method.By comparing with the solution result of different algorithms,the effectiveness of QEA for solving locationrouting problem model was proved.The low carbon location-routing problem was solved with QEA,and the carbon emission based on a set of benchmarks data were calculated and their influence factor were analyzed.Through analyzing the computational result,the carbon emission could be reduced effectively with proposed model,but the general cost would be increased.
出处 《计算机集成制造系统》 EI CSCD 北大核心 2017年第12期2768-2777,共10页 Computer Integrated Manufacturing Systems
基金 国家自然科学基金资助项目(61572438 61473263 61402409) 浙江省科技计划资助项目(2017C33224) 浙江省自然科学基金资助项目(LQ14G010008)~~
关键词 定位—路径问题 量子进化算法 碳排放 物流配送 location-routing problem quantum evolutionary algorithm carbon emission logistics distribution
  • 相关文献

参考文献8

二级参考文献102

共引文献214

同被引文献202

引证文献19

二级引证文献185

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部