期刊文献+

基于多尺度多特征的显著性区域检测 被引量:1

Salient region detection via multi-scale and multi-feature
下载PDF
导出
摘要 针对目前大多数显著性检测方法显著性区域轮廓不明显的缺点,提出了一种基于多尺度多特征的显著性区域检测算法.该算法利用基于改进的八邻域算法和基于熵率的超像素分割方法,获取到不同尺度下图像的亮度特征、颜色特征和纹理特征,从而使显著性区域的轮廓更明显.该算法在MSRA-1000、ECSSD、THUR15K 3个公开数据集上进行实验,并与现有的8种算法(FT,AC,IT,GB,AIM,SEG,SIM,SUN)做了对比,实验结果表明,该方法能够有效地提高图像的检测效果. In view of the disadvantages that the contour of the saliency area is not clear in many salient detection methods,we proposed a detection method based on multi-scale and multi-feature for saliency detection. We used the improved eight neighborhood method and the entropy-based super-pixel segmentation method to obtain the brightness characteristics, color features and texture features of the images at various scales so that the contours of the significant regions are more obvious. The algorithm was tested on three public datasets,MSRA-1000,ECSSD, and THUR15 K, compared with eight existing algorithms(FT, AC,IT,GB,AIM,SEG,SIM,SUN). The experimental results show that the proposed method can improve the detection effect of the image effectively.
出处 《河北工业大学学报》 CAS 2017年第6期26-31,共6页 Journal of Hebei University of Technology
基金 天津市应用基础与前沿技术研究计划(13JCQNJC00200 14JCYBJC18500 16JCYBJC15600)
关键词 八邻域 多尺度 超像素 多特征 显著性检测 eight neighborhood multi-scale super pixel multi-feature saliency detection
  • 相关文献

参考文献1

二级参考文献12

  • 1曲延云,郑南宁,李翠华,袁泽剑,叶聪颖.基于支持向量机的显著性建筑物检测[J].计算机研究与发展,2007,44(1):141-147. 被引量:11
  • 2FRINTROP S, CHRISTENSEN H I. Computational visual attention systems and their cognitive foundations: A Sur- vey [ J ]. ACM Transactions on Applied Perception, 2010, 7(1).
  • 3TREISMAN A M, GELADE G. A feature - integration the- ory of attention[J]. Cognitive Psychology, 1980, 12 (1).
  • 4ITrI L, KOCH C, N1EBUR E. A Model of Salieney - based visual attention for rapid scene analysis [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelli- gence, 1998, 20( 11 ).
  • 5HAREL J, KOCH C, PERONA P. Graph - based visual saliency [ C ]//Proceedings of the 2006 Conference Ad- vances in Neural Information Processing Systems. Vancou- ver: MIT Press,2006.
  • 6ACHANTA R, ESTRADA F, WILS P, et al. Salient re-gion detection and segmentation [ C ]//Proceedings of the International Conference on Computer Vision Systems. Springer, 2008.
  • 7Hou Xiaodi ,Zhang Liqing . Saliency Detection: A spec- tral residual approach [ C ]//Proceedings of the IEEE Con- ference on Computer Vision and Pattern Recognition. Minnesota: IEEE, 2007.
  • 8ACHANTA R, HEMAMI S, ESTRADA F, et al. Fre- quency - tuned salient region detection [ C ]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Miami : IEEE, 2009.
  • 9Cheng Mingming, Zhang Guoxin , MITRA N J, Huang Xiaolei , Hu Shimin. Global contrast based salient region detection[ C ]//Proceedings of IEEE Conference on Com- puter Vision and Pattern Recognition (CVPR). Colorado Springs: IEEE, 2011.
  • 10GOFERMAN S, ZELNIK - MANOR L, TAL A. Context - aware saliency detection [ J ]. IEEE Transactions on Pat- tern Analysis and Machine Intelligence, 2012, 34(10).

共引文献2

同被引文献4

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部