期刊文献+

基于IPSO-Elman神经网络的航空发动机故障诊断 被引量:32

Aero-engine fault diagnosis based on IPSO-Elman neural network
原文传递
导出
摘要 为提高航空发动机故障诊断的精度,提出改进粒子群优化的Elman神经网络对航空发动机故障诊断的方法。利用MIV(平均影响值)对神经网络的输入端自变量进行筛选,降低输入维度;采用改进粒子群优化算法对Elman神经网络的权值和阀值进行优化,并对优化的神经网络进行训练;用训练好的神经网络对航空发动机故障进行诊断并与常规的BP(back propagation)、Elman神经网络、GM(1,n)、SVM(support vector machines)进行对比。仿真结果表明:IPSO-Elman(improved particle swarm optimization Elman neural network)神经网络的诊断误差在不同数量训练样本时都小于其他方法,并且在参选故障诊断的性能参数不同时,其诊断误差相近,展现出较强的适应能力。 An Elman neural network optimized by improved particle swarm optimization algorithm was proposed to improve the accuracy of aero-engine fault diagnosis.The input variables of the neural network were selected by MIV(mean impact value)to reduce the dimension.The improved particle swarm optimization algorithm was used to optimize the weights and thresholds of the Elman neural network,and the optimized neural network was trained.The trained neural network was used to diagnose the aero-engine fault and compared with the conventional BP(back propagation),Elman neural networks,GM(1,n),SVM(support vector machines).The simulation results show that the diagnostic error of IPSOElman(improved particle swarm optimization Elman neural network)is smaller than other methods,and it has a good diagnosis ability and strong adaptability when the selection fault diagnosis performance parameters have changed.
作者 皮骏 黄江博
出处 《航空动力学报》 EI CAS CSCD 北大核心 2017年第12期3031-3038,共8页 Journal of Aerospace Power
基金 中央高校基本科研业务费中国民航大学专项资金(3122013H001)
关键词 航空发动机 ELMAN神经网络 平均影响值 改进粒子群优化算法 故障诊断 aero-engine Elman neural network mean impact value imporved particle swarm optimization algorithm fault diagnosis
  • 相关文献

参考文献8

二级参考文献68

共引文献115

同被引文献246

引证文献32

二级引证文献160

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部