期刊文献+

具有接种与治疗的肺结核模型稳定性分析 被引量:3

The stability analysis for a tuberculosis model with vaccination and treatment
下载PDF
导出
摘要 建立具有接种和不完全治疗的肺结核模型,讨论其平衡点的存在性和稳定性,定义了模型的基本再生数,得到了疾病绝灭与否的阈值R0,并通过运用LaSalle不变原理和构造Lyapunov函数,证明了无病平衡点和地方病平衡点的全局稳定性,即当R0≤1时,该肺结核模型仅存在无病平衡点E0,且E0全局渐近稳定;当R0>1时,该模型存在无病平衡点E0和地方病平衡点E*,且E*是全局渐近稳定的. A tuberculosis model is established with vaccination and incomplete treatment.The existence and stability of the model equilibrium point are discussed,and the threshold value R_0 is obtained,which determines the disease extinction or not.By LaSalle′invariant principle and Lyapunov functions,the global stability of disease-free equilibrium and epidemic equilibrium are proved.For this TB model,it is proved that the unique disease-free equilibrium E_0 is global asymptotic stability if R_0≤1;the tuberculosis model has disease-free equilibrium E_0 and endemic equilibrium E*,and the endemic equilibrium E*is global asymptotic stability if R_01.
出处 《纺织高校基础科学学报》 CAS 2017年第4期496-502,共7页 Basic Sciences Journal of Textile Universities
基金 陕西省教育厅自然科学专项基金资助项目(15JK1295) 陕西省自然科学基础研究计划项目(2016JQ1029)
关键词 肺结核 接种 不完全治疗 平衡点 全局稳定性 tuberculosis vaccination incomplete treatment equilibrium point global stability
  • 相关文献

参考文献5

二级参考文献34

  • 1Vynnycky E, Fine P E M. The natural history of tuberculosis: the inplications of age-dependent risks of disease and the role of reinfection[J]. Epidemiol Infect,1997;119:183-201
  • 2Styblo K. Selected paper: Epidemiology of tuberculosis[C]. Royal Netherlands Tuberculosis Association,24. The Hague, The Netherlands1991
  • 3Baojun Song C, Castillo-Chavez, Juan P. Aparicio, Global dynamics of tuberculosis models with density dependent demogegraphy[C]. In: Mathematical Approaches for Emerging and Reemerging Infectious Diseases: Models, Methods and Theory, IMA Volume 126, 275-2
  • 4Carlos Castillo-Chavez, Zhiian Feng. To treat or not to treat: the case of tuberculosis[J]. J. Math.Biol,1997;35:629-656
  • 5Carlos Castillo-Chavez, Zhilan Feng, Global stability of an age-structure model for TB and its application to optimal vaccination strategies[J]. Math. Biosci,1998;151:135-154
  • 6James S. Muldowney, Comrnound Matrices and Ordinary Differential Equations, Rocky Mountain[J]. Journal of Mathematics, Fall(1990;20(4):861
  • 7S.M.Lozinskil Error estimates for the numerical integration of ordinary differential equations[J]. Izv. Vyssh.Uchebn. Zaved. Mat,1958;5(6):52-90
  • 8Dahlquist G, Stability, error bounds in the numerical integration of ordinary differential equations[M].Kungl. Tekn. Hogsk. Handl. Stockholm,1959;130
  • 9R.H.Martin. Jr., Logarithmic norms and projections applied to linear differential systams[J].J.Math. Anal. Appl.,1974;45:432-454
  • 10Michael Y.Li and James S.Muldowney, A geometric approach to global-stability problems[J]. SIAM J Math Anal, July1996;27(4): 1070-1083

共引文献14

同被引文献41

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部