1Petras I. Fractional-order Nonlinear Systems: Modeling, Analysis and Simulation [M] .Beijing: Springer-Higher Education Press, 2011.
2Peng C, Li W, Wang Y. Frequency domain identification of fractional order time delay systems [C ]//2010 Chinese Control and Decision Conference (CCDC) .Xuzhou, China, 2010: 2635-2638.
3Wang L, Cheng P, Wang Y.Freqnency domain snbspace identifica- tion of commensurate fractional order input time delay systems [J]. International Journal of Control, Automation and Systems, 2011, 9 (2) : 310-316.
4Duarte Valerioa, Ines Tejadoa. Identifying a non-commensurable fractional transfer function from a frequency response [J]. Signal Processing, 2015, 107: 254-264.
5Malti R, Victor S, Oustaloup A, et al. An optimal instrumental variable method for continuous time fractional model identification [C]//The 17th IFAC World Congress, Seoul, 2008.
6Zeng L, Cheng P, Yong W. Subspace identification for commensurate fractional order systems using instrumental variables [C]//2011 30th Chinese Control Conference, Yantai, China, 2011 : 1636-1640.
7Doha E H, Bhrawy A H, Ezz-El.dien S S.A new Jacobi operational ma- trix: an application for solving fractional differential equations [J] .Ap- plied Mathematical Modelling, 2012, 36(10) : 4931-4943.
8Saadatmandi A, Dehghan M. A new operational matrix for solving fractional-order differential equations [J ]. Computers & Mathematics with Applications, 2010, 59(3) : 1326-1336.
9Kazem S. An integral operational matrix based on Jacobi polynomials for solving fractional-order differential equations [J]. Applied Mathematical Modelling, 2013, 37(3) : 1126-1136.
10Babolian E, Masouri Z.Direct method to solve Vohen'a integral e- quation of the first kind using operational matrix with block-pulse functions [J] .Journal of Computational and Applied Mathematics, 2008, 220(1) : 51-57.