期刊文献+

基于累积损失混合模型的贝叶斯保费研究

Bayesian Ratemaking Based on Mixed Models of Aggregated Claim Amount
原文传递
导出
摘要 商业车险的费率由先验费率和后验费率两部分构成。通常使用广义线性模型厘定先验费率,然后基于个体保单的索赔经验,应用贝叶斯方法计算后验费率。在传统方法中,一般是分别根据索赔次数或索赔强度建立费率厘定模型。本文基于个体保单的累积损失数据建立了一种混合回归模型,并在此基础上计算贝叶斯保费,为非寿险费率厘定提供了一种新方法。在先验费率的厘定中,基于个体保单的累积损失数据建立混合零调整逆高斯回归模型,代替了传统的Tweedie回归模型。对先验费率进行调整时,用个体保单的累积损失代替通常使用的索赔次数或索赔强度,规避了索赔次数与索赔强度之间的相依性可能造成的干扰。 The rate of commercial auto insurance consists of a priori rate and a posterior rate.The generalized linear models are usually used to determine the priori rate,and then based on the individual 's claim experience,the Bayesian method is used to calculate the posterior rate.Traditional ratemaking methods are usually based on claim numbers or claim severity.Based on the aggregated claim amounts of individual policies,this paper established a mixed regression model to calculate the Bayesian premium and provided a new method for non-.life insurance ratemaking.In the priori ratemaking process,the mixed zero-.adjusted inverse Gaussian regression model was established to replace the traditional Tweedie regression.In order to avoid the influence of possible dependence between the claim numbers and claim severity,aggregated claim amounts of individual policies were used to replace the claim numbers or claim severity in determining Bayesian premium.
出处 《保险研究》 CSSCI 北大核心 2017年第11期70-79,共10页 Insurance Studies
基金 教育部人文社会科学重点研究基地重大项目"基于大数据的精算统计模型与风险管理问题研究"(16JJD910001) 国家社科基金重大项目"巨灾保险的精算统计模型及其应用研究"(16ZDA052)
关键词 累积损失 混合模型 汽车保险 费率厘定 贝叶斯方法 aggregated claim amount mixed models auto insurance ratemaking Bayesian method
  • 相关文献

参考文献3

二级参考文献16

  • 1Ohlsson E, Johansson B. Non-life Insurance Pricing with Generalized Linear Models[M]. Heidelberg: Springer, 2010.
  • 2De Jong P, Heller G Z. Generalized Linear Models for Insurance Data[M]. London: Cambridge University Press, 2008.
  • 3Bignozzi V, Puccetti G, Rtisehendorf L. Reducing Model Risk Via Positive and Negative Dependence Assumptions[J]. Insurance: Mathematics and Economies, 2015,61 (1).
  • 4Gsehlgl S, Czado C. Spatial Modelling of Claim Frequency and Claim Size in Insurance[J]. Scandinavian Actuarial Journal, 2007 (3).
  • 5Jorgensen B, Paes De Souza M C. Fitting Tweedie's Compound Poisson Model to Insurance Claims Data[J]. Scandinavian Actuarial Journal, 1994(1).
  • 6Smyth G K. Fitting Tweedie's Compound Poisson Model to Insurance Claims Data: Dispersion Modelling[J].Astin Bulletin, 2002, 32(1).
  • 7Heller G Z, Stasinopoulos D M, Rigby R A. The Zero Adjusted Inverse Gaussian Distribution as a Model for Insurance Data[C]. Proceedings of the International Workshop on Statistical Modelling, 2006.
  • 8Frees E W, Young V R, Luo Y. A Longitudinal Data Analysis Interpretation of Credibility Models[J]. Insurance Mathematics and Economics, 1999, 24(3).
  • 9Antonio K, Beirlant J. Actuarial Statistics with C-eneralized Linear Mixed Models[J]. Insurance.. Mathematics and Economics, 2007, 40(1).
  • 10Frees E W, Valdez E A. Understanding Relationships Using Copulas[J]. North American actuarial journal, 1998, 2(1).

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部