摘要
目的评价系统测量程序对临床生化项目测量结果精密度的影响。方法2009年6月、2010年6月和9月,卫生部临床检验中心与日本福冈地区五医院联合会共同组织了3次中日实验室ALT、AST、GGT、ALP、CK、LDH、AMY、ChE、TG、TC、HDL-C、LDL-C、Glu、Cr、BUN、UA、K、Na、Cl、Ca、TP、Alb、TBil、DBil、P、Fe26个临床化学检验项目结果比对。针对北京航天总医院26个项目的3次数据进行研究:(1)采用吸量管、加样器、稀释配液仪三种移液工具复溶干粉样品,观察不同复溶方式的精密度。(2)采用日本日立公司提供的2个浓度水平(101-Ⅰ,101-Ⅱ)的冻干粉质控品为实验样本,分三个阶段进行实验。每阶段连续测定28 d,观察实验室26个临床生化项目测量结果精密度的变化。第一阶段采用实验室测量程序测定待评价样本;第二阶段26个项目设定为单日二次校准及单日一次校准两种校准周期,规定校准合格标准,统一样品复融条件,再次测定待评价样本;第三阶段GGT、ALP、ChE、TG、Cr、Na、K、CL、ALB采用单日二次校准、其余项目为单日一次校准测定待评价样本,观察各阶段测量结果精密度及变化。(3)以三个阶段各临床化学项目质控结果为基础,分析优化校准模式、样品复融条件后的系统测量程序对精密度改进的作用,采用JSCC质量目标及卫生行业标准质量目标评估优化后系统测量程序后的精密度是否能够达到要求。(4)采用配对T检验判断第二阶段优化系统测量程序后测量结果精密度与第一阶段有无统计学差异,观察精密度改善的效果;判断第三阶段与第二阶段测量结果精密度有无统计学差异,观察优化后的系统测量程序是否能够保持良好的精密度。结果(1)吸量管、加样器、稀释配液仪复溶校准品的精密度分别为0.56%、0.10%、0.01%。(2)第一阶段ALT、AST、GGT、ALP、CK、LDH、AMY、ChE、TG、TC、HDL-C、LDL-C、Glu、Cr、BUN、UA、K、Na、Cl、Ca、TP、Alb、TBil、DBil、P、Fe项目101-Ⅰ、101-Ⅱ样本精密度分布范围分别为0.99%~10.5%/0.91%~7.03%;第二阶段各项目101-Ⅰ、101-Ⅱ样本精密度分布范围分别为0.66%~8.81%/0.66%~4.28%;第三阶段各项目101-Ⅰ、101-Ⅱ样本精密度分布范围分别为0.60%~3.91%/0.73%~3.39%。(3)第一阶段101-Ⅰ、101-Ⅱ样本测量精密度JSCC质量目标符合率分别为73%/80%,卫生行业标准质量目标符合率分别为80%/88%;第二阶段101-Ⅰ、101-Ⅱ样本测量精密度JSCC质量目标符合率分别为88%/100%,卫生行业标准质量目标符合率分别为100%/100%;第三阶段101-Ⅰ、101-Ⅱ样本测量精密度JSCC质量目标符合率分别为96%/100%,卫生行业标准质量目标符合率分别为96%/100%。(4)三阶段测量结果精密度比较:第二阶段精密度与第一阶段101-Ⅰ、101-Ⅱ均有统计学差异;第三阶段与第二阶段精密度101-Ⅰ、101-Ⅱ均无统计学差异。结论(1)稀释配液仪复溶干粉样品的精密度优于其他两种;(2)改进校准模式、样品复融可使26个临床生化项目测量结果精密度下降超过50%,明显改进各临床生化项目测量结果的精密度。
ObjectiveTo evaluate the system measurement procedure effects on the analytic precision of clinical chemistry analytes.MethodsIn June 2009, June 2010 and September 2010 respectively, the National Center for Clinical Laboratories of China and the Organization of Five Hospitals in Fukuoka Japan organized comparison activities of 26 clinical chemistry analytes which were ALT, AST, GGT, ALP, CK, LDH, AMY, ChE, TG, TC, HDL-C, LDL-C, Glu, Cr, BUN, UA, K, Na, Cl, Ca, TP, Alb, TBil, DBil, P, Fe.In this paper, we investigated 26 analytes of three sets in Beijing Aerospace General Hospital as follows. (1) The precision of different reconstitution methods was observed by using three kinds of pipetting tools, such as measuring pipette, pipette and dispenser. (2) The experiments were carried out in three stages by testing the dried powder control samples of two concentration levels (101-Ⅰ, 101-Ⅱ) provided by Hitachi Japan. They were measured on 28 consecutive days at each stage in order to observe the precision of 26 clinical chemistry analytes. In the first stage, we used the former measurement procedure to measure the control samples; in the second stage we added three conditions of the measurement procedure. The first was two calibration modes, which were once-a--day calibration and twice-a--day calibration. The second was the calibration standard and the last was the conditions of the freeze-thaw samples. In the third stage, we used the twice-a-day calibration only for GGT, ALP, ChE, TG, Cr, Na, K, CL, ALB. (3) JSCC and Health Industry Standard quality objectives were implemented to evaluate whether the precision of the improved measurement procedure met the requirements.(4) Paired T test were used to compare the precision of measurement between the second stage and the first stage, and between the third stage and the second stage of the measurement procedure.Results(1)The precision of three kinds of pipetting tools were 0.56%, 0.10%, 0.01%.(2)The ranges of precision of ALT, AST, GGT, ALP, CK, LDH, AMY, ChE, TG, TC, HDL-C, LDL-C, Glu, Cr, BUN, UA, K, Na, Cl, Ca, TP, Alb, TBil, DBil, P, Fe were 0.99%-10.5% about 101-Ⅰ and 0.91%-7.03% about 101-Ⅱ in the first stage. The ranges of precision were 0.66%-8.81% of 101-Ⅰ and 0.66%-4.28% of 101-Ⅱ in the second stage. The ranges of precisions were 0.60%-3.91% of 101-Ⅰ and 0.73%-3.39% of 101-Ⅱ in the third stage.(3)73%/80% of the samples met the standard of JSCC about 101-Ⅰ and 101-Ⅱ and 80%/88% of the samples met the standard of Health Industry Standard in the first stage. 88%/100% of the samples met the standard of JSCC about 101-Ⅰand 101-Ⅱ and 100%/100% samples met the standard of Health Industry Standard in the second stage. The ratio of samples meeting the standard of JSCC about 101-Ⅰand 101-Ⅱwere 96%/100% and that of Health Industry Standard were 100%/100% in the third stage.(4)Precision of 101-Ⅰ and 101-Ⅱ was statistically significant between the measurement procedures of second stage and the first stage, and there was no significant difference between the third stage and the second stage.Conclusion(1) The precision of samples using dispenser to reconstitute is higher than that of the other two pipetting methods. (2) Improving the calibration mode and reconstitution of samples increase the precision of 26 clinical chemistry analytes by over 50%.
出处
《中华检验医学杂志》
CAS
CSCD
北大核心
2018年第2期149-154,共6页
Chinese Journal of Laboratory Medicine
基金
国家质检公益项目(201010066)
关键词
化学
临床
校准
参考值
实验室
医院
诊断试验
常规
Chemistry, clinical
Calibration
Reference values
Laboratories, hospital
Diagnostic tests, routine