期刊文献+

纤维混掺改性高强自密实混凝土试验与分析 被引量:4

Experiment and Analysis on the Modified HSCC Mixed with Composite Fibers
下载PDF
导出
摘要 为研究不同结构层次纤维混掺对混凝土力学性能的改善作用,以镀铜微丝钢纤维和纳米碳纤维的掺量为参数,设计制备了纤维混掺改性高强自密实混凝土。试验表明:相较对照组,纤维改性混凝土的工作性能略有降低,而力学性能有不同幅度的提高,立方体抗压、轴压、劈裂、抗折强度的最大增幅分别为18.52%、21.10%、57.17%和54.40%。将数值分析与非线性回归结合,获得非样本纤维掺量下混凝土强度分析值的基础上,确定不同纤维的最优掺量。研究结果显示:适当掺量且分散良好的镀铜微丝钢纤维和纳米碳纤维混掺对高强自密实混凝土抗压、劈拉及抗折强度的提高分别存在超叠加、叠加及负混杂效应。 To study the effect of mixing composite fibers in different layers of structure on the mechanical property of concrete, the mixing amount of copper-coated steel fiber (SF) and carbon nanofiber (CNF) was used as parameter, and the modified HSCC mixed with composite fibers was designed and prepared. The experiment results indicate that compared with the control group, the modified concrete mixed with composite fiber has slightly lower working performance, while the mechanical properties are improved by differed degrees, with the maximum improvement of cube compressive, axial compression, splitting tensile and flexural strength reaching 18.52% , 21.10% , 57.17% and 54.40% respectively. Based on the analysis of the strength of non-sample concrete mixed with composite fiber, the optimal content of different fibers was determined by combining numerical analysis with non-linear regression. The study results show that the mix of well-distributed SF and CNF with appropriate amount has the superimposed, imposed and negative confounding effects on the improvement of compressive, splitting tensile and flexural strength of HSCC.
机构地区 东北林业大学
出处 《硅酸盐通报》 CAS CSCD 北大核心 2018年第2期706-712,共7页 Bulletin of the Chinese Ceramic Society
基金 黑龙江省博士后科研启动基金(LBH-Q15011)
关键词 混掺纤维 高强自密实混凝土 力学性能 数值分析 composite fiber high-strength self-compacting concrete mechanical property numerical analysis
  • 相关文献

参考文献4

二级参考文献53

  • 1韩宝国,关新春,欧进萍.纳米氧化钛与碳纤维水泥石的电阻率及压敏性[J].硅酸盐学报,2004,32(7):884-887. 被引量:12
  • 2GB/T50081-2002,普通混凝土力学性能试验标准[S].
  • 3Garboczi E J. Concrete nanoscience and nanotechnology: Definitions and applications. Nanotechnology in construc- tion[ C]//Proceedings of the NICOM3 (3rd intemational symposium on nanotechno/ogy in construction). Prague: Czech Republic ,2009:81 - 88.
  • 4Vikas Khannal, Bhavik R Bakshi, L James Lee. Carbon nanofiber production life cycle energy consumption and environmental impact[ J ]. Journal of Industrial Ecology, 2008,112(3) :394 -410.
  • 5Metaxa Z S, Konsta C, doutos Maria S, Shah Surendra P. Carbon nanofibor reinforced cement - based materials [ J ]. Transportation Research Board,2010 (2142) : 114 - 118.
  • 6Sanchez F, Ince C. Microstructure and macroscopic prop- erties of hybrid carbon nanofibers/silica fume cement composites [ J ]. Composites Science and Technology, 2009,69 (7 - 8 ) : 1310 - 1318.
  • 7Agullo J V, Chozas Ligero V, Portillo Rico D,et al. Mor- tar and concrete reinforced with nanomaterials [ J ]. Nano- technology in Construction 3,2009, Part 3:383 - 388.
  • 8Metaxa Z S, Konsta Gdoutos Maria S, Shah Surendra P. Carbon nanofiber reinforced cement - based materials [ J ]. Transportation Research Board,2010 (2142) : 114 - 118.
  • 9Agullo J V, Chozas Ligero V, Portillo Rico D, et al. Mor- tar and concrete reinforced with nanomaterials [ J ]. Nano- technology in Construction 3,2009 ,Part 3:383 - 388.
  • 10Hughes T. Fly ash enhanced carbon nanofiber - reinforced high strength cement[ R]. Ohio Air Quality. Vers. Final Report. Dec. 2004. Ohio Coal Development Office. 5 Sept ,2008 ,http :/! www. ohioairquality, org/ocdo/pdf / 20Odd -99 - 14. pdf.

共引文献30

同被引文献30

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部