期刊文献+

基于噪声补偿的迭代平方根CKF的汽车雷达目标跟踪算法 被引量:1

Target tracking algorithm for automotive radar based on iterated square-root CKF by noise compensation
下载PDF
导出
摘要 提出一种适用于汽车雷达目标跟踪的基于噪声补偿的迭代平方根容积卡尔曼滤波(NISRCKF)算法。在继承平方根容积卡尔曼滤波(SRCKF)算法快速和鲁棒等优点的基础上,结合Gauss-Newton迭代理论和噪声补偿方法,设计了一种对SRCKF的量测更新过程进行迭代更新的新算法,充分利用了最新的量测信息,通过选取合适的噪声补偿因子进一步提高对汽车雷达目标跟踪的精度。针对汽车雷达目标跟踪问题进行Monte-Carlo仿真实验,与SRUKF,SRCKF和ISRCKF等经典算法进行对照,实验结果表明,文中算法滤波精度比经典滤波算法有明显的提高,且一定范围内增加迭代次数和设置合适的噪声补偿因子能有效提高滤波精度。 A iterated square-root cubature Kalman filter (ISRCKF) algorithm by the noise compensation for target tracking of automotive radar is proposed. Based on the fast and robust advantages of SRCKF, combined with Gauss-Newton iterative theory and the method for the noise compensation, a new algorithm is designed to iterate and update the measurement process. The newest measurement is fully utilized, and the accuracy of the target tracking can be further improved by selecting the appropriate noise compensa- tion factor. Aimed at target tracking problems to the automotive radar, Monte-Carlo simulation experiments are carried out and the algorithm is compared with classical algorithms, such as square-root unscented Kalman filter (SRUKF), SRCKF and ISRCKF. The experimental results show that the overall filtering accuracy of the algorithm is obviously improved compared with other classical filtering algorithms. Moreo- ver, increasing the number of iterations in a certain range and setting appropriate noise compensation fac- tor can effectively improve the filtering accuracy.
出处 《南京邮电大学学报(自然科学版)》 北大核心 2018年第1期113-118,共6页 Journal of Nanjing University of Posts and Telecommunications:Natural Science Edition
基金 国家自然科学基金(61402237) 江苏省社会安全图像与视频理解重点实验室基金(30920140122007)资助项目
关键词 平方根 容积卡尔曼滤波 迭代 噪声 汽车雷达 目标跟踪 square-root cubature Kalman fiher iterative noise automotive radar target tracking
  • 相关文献

参考文献5

二级参考文献66

  • 1郭文艳,韩崇昭,雷明.迭代无迹Kalman粒子滤波的建议分布[J].清华大学学报(自然科学版),2007,47(z2):1866-1869. 被引量:10
  • 2李良群,姬红兵,罗军辉.迭代扩展卡尔曼粒子滤波器[J].西安电子科技大学学报,2007,34(2):233-238. 被引量:60
  • 3肖雷,刘高峰,魏建仁.几种机动目标运动模型的跟踪性能对比[J].火力与指挥控制,2007,32(5):106-109. 被引量:7
  • 4Y. BAR-SHALOM, X. R. LI, Estimation with applications to tracking and navigation[M]. John Wiley & Sons, Inc, 2001.
  • 5M.S. Grewal, A .P. Ankrews, Kalman filtering: Theory and practice using matlab[M], second ed., John Wiley & Sons, Inc. 2001.
  • 6Julier S J, Uhlmann J K. Unscented filtering and nonlinear estimation[J]. Proc of the IEEE, 2004, 92(3): 401-422.
  • 7N.J. Gordon, D.J. Salmonk, A.F.M, Smith, Novel approach to nonlinear/non-Gaussian Bayesian state estimation, lEE Proceedings-F[J]. 1993, 140(2): 107-113.
  • 8Arulampalam S, Askell S, Gordon N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J]. IEEE Trans on Signal Processing, 2002, 50(2): 174-188.
  • 9K. ITO, K. Xiong, Gaussian filters for nonlinear filtering problems[J]. IEEE Trans on Automatic Control. 2000, 45(5): 910-927.
  • 10Arasaratnam, S. Haykin, R.J. Elliott, Discrete-time nonlinear filtering algorithms using Gauss-Hermite quadrature[C]. Proc of the IEEE. 2007, 95(5): 953-977.

共引文献108

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部