期刊文献+

基于深度学习与传统机器学习的人脸表情识别综述 被引量:14

Facial expression recognition based on deep learning and traditional machine learning
下载PDF
导出
摘要 现有的人脸表情识别技术基本局限于传统的机器学习算法,在光照强弱、有遮挡物、姿态变换等情况下,传统的机器学习算法鲁棒性差,难以运用到实际生活中。随着计算机GPU等硬件条件的发展、大数据时代的到来,深度学习在计算机视觉领域备受关注。本文从图像预处理、特征提取、特征分类等方面介绍了传统机器学习算法及其优缺点;从DBN、CNN等主流算法、发展方向、常用开发框架介绍了深度学习算法。最后总结和展望了传统机器学习与深度学习在人脸表情识别上的发展问题与趋势以及后续研究方向。 The existing facial expression recognition technology is limited to the traditional machine learning algorithms basically. The traditional machine learning algorithms have a low robustness in the case of light intensity, obstruction and posture change, which causes some difficulties in the practical application. With the development of the computer hardware conditions such as GPU and the development of the big data, deep learning became the focus in the field of computer vision. This paper introduces the traditional machine learning algorithm, its merits and shortcomings from such aspects as image preprocessing, feature extraction and feature classification; describes the deep learning algorithm from such aspects as the mainstream algorithms including DBN and CNN, development direction and common development framework ; finally, summarizes and forecasts the development and trends of traditional machine learning and deep learning in facial expression recognition as well as the follow-up research direction.
作者 王信 汪友生
出处 《应用科技》 CAS 2018年第1期65-72,共8页 Applied Science and Technology
基金 中国博士后科学基金项目(2017M610731)
关键词 人脸表情识别 深度学习 CNN 机器学习 计算机视觉 图像预处理 特征提取 特征分类 facial expression recognition deep learning CNN machine learning computer vision image preprocessing feature extraction feature classification
  • 相关文献

参考文献12

二级参考文献125

  • 1王宇博,艾海舟,武勃,黄畅.人脸表情的实时分类[J].计算机辅助设计与图形学学报,2005,17(6):1296-1301. 被引量:14
  • 2程剑,应自炉.基于二维主分量分析的面部表情识别[J].计算机工程与应用,2006,42(5):32-33. 被引量:9
  • 3刘晓旻,谭华春,章毓晋.人脸表情识别研究的新进展[J].中国图象图形学报,2006,11(10):1359-1368. 被引量:62
  • 4Sun W, Ruan Q Q. Two-dimension PCA for facial expression recognition. In Proc. IEEE International Conference on Signal Processing (ICSP2000), Guilin, China, Nov. 11-14, 2006, Vol.3.
  • 5Tsai D M, Lai S C. Defect detection in periodically patterned surfaces using independent component analysis. Pattern Recognition, 2008, 41(9): 2812-2832.
  • 6Sang N, Wu J W, Yu K. Local Gabor fisher classifier for face recognition. In Proc. the 4th International Conference on Image and Graphics, Chengdu, China, Aug. 22-24, 2007, pp.620-626.
  • 7Pardas M, Bonafonte A. Facial animation parameters extraction and expression detection using Hidden Markov Models. Signal Process: Image Commun., 2002, 17(9): 675-688.
  • 8Aleksic P S, Katsaggelos A K. Automatic facial expression recognition using facial animation parameters and multistream HMMs. IEEE Transactions on Information Forensics and Security, 2006, 1(1): 3-11.
  • 9Zhou X X, Huang X S, Xu B, Wang Y S. Real-time facial expression recognition based on boosted embedded hidden Markov model. In Proc. International Conference on Image and Graphics, Hong Kong, China, Dec. 18-20, 2004, pp.290- 293.
  • 10Ma L, Chelberg D, Celenk M. Spatio-temporal modeling of facial expressions using Gabor wavelets and hierarchical Hidden Markov Models. In Proc. IEEE International Conference on Image Processing (ICIP2005), Genoa, Italy, Sept. 11-14, 2005, Vol. 2, pp.57-60.

共引文献216

同被引文献101

引证文献14

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部