摘要
对于变系数高阶非线性薛定谔(HNLS)方程,利用Hirota算子得到方程的双线性形式,进一步用双线性方法求解得到了方程的呼吸子解和怪波解。最后通过三维图和密度图形象地说明系数函数的变化对呼吸波和怪波传播的影响。
In this paper, the bilinear form of the variable-coefficient high-order nonlinear Schr9 dinger( HNLS) equation is gained by using the Hirota operator. The bilinear method is used to obtain the breather and rogue-wave solutions of this equation. The influences of the coefficient functions on breather waves and the rogue waves are discussed graphically.
出处
《北京信息科技大学学报(自然科学版)》
2018年第1期42-45,共4页
Journal of Beijing Information Science and Technology University
基金
国家自然科学基金资助项目(61471406
11401031)
关键词
变系数HNLS方程
呼吸波
怪波
双线性方法
variable-coefficient HNLS equation
breather wave
rogue wave
Hirota bilinear method