期刊文献+

基于交叉协方差子空间估计的前景检测方法

A Foreground Detection Method Based on Cross-Covariance Subspace Estimation
下载PDF
导出
摘要 提出了一种基于交叉协方差子空间估计的背景建模方法,用以实现复杂场景下的前景检测.基于交叉协方差的主成分分析方法可以保留更多的图像协方差信息,因此非常适合用于背景模型的构建.本文首次将基于交叉协方差的二维主成分分析方法引入至背景建模领域,并且提出了相应的增量更新算法来实现背景的自适应估计.此外,本文考虑了前景的稀疏性及连续性,并将其合理应用于前景检测过程中.定量实验和定性分析表明,本文提出的方法具有较强的鲁棒性,可以实现复杂场景下的准确背景建模. In this paper,a novel background modeling method was proposed based on crosscovariance subspace estimation to detect foreground in complex scenarios.The cross-covariance based 2 DPCA(2 dimensional principal component analysis)method can preserve more image covariance information,which makes it suitable for background modeling.Therefore the crosscovariance based 2 DPCA method was introduced into background modeling field and a correlative incremental algorithm was proposed for adaptively estimating background.Considering the sparsity and the continuity of the foreground,the method was used in foreground detecting accurately.Quantitative experimental and qualitative analysis results show that the proposed method can estimate the background information accurately and robustly in complex scenarios.
作者 秦明 陆耀
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2018年第1期91-95,共5页 Transactions of Beijing Institute of Technology
关键词 背景建模 交叉协方差子空间估计 复杂场景 background modeling cross-covariance based subspace estimation complex scenarios
  • 相关文献

参考文献2

二级参考文献25

  • 1Piccardi M. Background subtraction techniques: a review [-C-] /// IEEE International Conference on Systems, Man and Cybernetics. The Hague, The Neth- erlands: [-s. n. -1, 2004:3099 - 3104.
  • 2Elhabian S, E1-Sayed K, Ahmed S. Moving object detection in spatial domain using background removal techniques-state-of-art[J-]. Recent Patents on Computer Science, 2008,1(1) ..32 - 54.
  • 3Bouwmans T. Subspace learning for background modeling a survey I J]. Recent Patents on Computer Science, 2009,2 (3) : 223 - 234.
  • 4Wren C, Azarbayejani A, Darrell T, et al. Real-time tracking of the human body[-J]. IEEE Trans on Pattern Anal Machine Inteil, 1997,19 : 780 - 785.
  • 5Stauffer C, Eric W, Grimson W E L. Learning patterns of activity using real-time tracking[-J. IEEE Trans on Pattern Anal Machine Intell, 2000,22 .. 747 - 757.
  • 6Elgammal A, Duraiswami R, Harwood D, et al. Background and foreground modeling using nonparametric kernel density for visual surveillance[-J. Proceedings of the IEEE, 2002,90 .. 1151 - 1163.
  • 7Seki M, Wada T, Fuiiwara H, et al. Background subtraction based on cooccurrence of image variations [-C]//IEEE Conference on Computer Vision and Pattern Recognition. Madison, Wisconsin, USA: s. n. ], 2003 : 11-65 -11-72.
  • 8Heikkila M, Pietikainen M. A texture-based method for modeling the background and detecting moving objects J3. IEEE Trans on Pattern Anal Machine Intell, 2006, 28(4) :657 - 662.
  • 9] Lin H H, Liu Y L, Chuang J H. Learning a scene back- ground model via classification [-J. IEEE Trans on Signal Processing, 2009,57(5) : 1641 - 1654.
  • 10Monnet A, Mittal A, Paragios N, et al. Background modeling and subtraction of dynamic scenes[C]//IEEE International Conference on Computer Vision. Nice, France.. Is. n. ], 2003..1305 - 1312.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部