期刊文献+

Heusler合金Co_2V_xMn_(1-x)Al的电子结构、磁性及半金属性

Electronic Structure,Magnetic Property and Half-Metallic Property of Heusler Alloy Co_2V_xMn_(1-x)Al
原文传递
导出
摘要 采用基于密度泛函理论(density functional theory,DFT)的缀加平面波方法,使用广义梯度近似(generalized gradient approximation,GGA)对Heusler合金Co_2V_xMn_(1-x)Al(x=0,0.25,0.5,0.75,1)的磁性、半金属性及电子结构进行了研究,揭示了晶格常数、总磁矩及费米能级随合金成分变化的规律,讨论了原子间相互作用对能隙的影响.研究发现,随着x的增加,系列合金的晶格常数呈线性增加,满足维加德定律(Vegard’s law);系列合金的总磁矩呈线性下降趋势,符合S-P规则(Slater-Pauling rule).随着x的增加,费米能级逐渐从Co_2MnAl的价带顶移动至Co_2VAl的导带底.当x=0.5时,费米能级恰好处于能隙中部且合金的形成热最低,此时合金具有最佳的半金属稳定性.结果表明四元合金有可能成为具有更高自旋极化率和更强抗干扰能力的自旋电子学材料. Based on the density functional theory(DFT),the electronic structure,magnetic properties and halfmetallicity of Heusler alloy Co_2V_xMn_(1-x)Al(x=0,0.25,0.5,0.75,1)are investigated via generalized gradient approximation(GGA).It is found that the lattice constant of the alloys linearly increases and the total magnetic moment linearly decreases with the increasing of V content,following the Vegard's law and Slater-Pauling behavior very well,respectively.Furthermore,the Fermi level gradually moves from the valence band maximum to the conduction band minimum with the increasing of x.The Fermi level nearly locates in the middle of energy gap as x=0.5,suggesting excellent half-metallicity.The investigation of the formation energies of the alloys finds that the formation energy is the lowest as x=0.5,indicating Co_2V_(0.5)Mn_(0.5)Al has good stability as well.Quarternary Heusler alloy is a promising half-metallic candidate for spintronics applications.
出处 《武汉大学学报(理学版)》 CAS CSCD 北大核心 2017年第6期476-482,共7页 Journal of Wuhan University:Natural Science Edition
基金 国家自然科学基金资助项目(11574242)
关键词 密度泛函理论 HEUSLER合金 磁性 半金属性 density functional theory Heusler alloy magnetic properties half metallic property
  • 相关文献

二级参考文献162

  • 1Prinz G A 1995 Physics Today 48 58.
  • 2Kobayashi K I, Kimura T, Sawada H, Terakura K and Tokura K 1998 Nature 395 677.
  • 3LIU H R, Shamaila S, CHEN J Y, Sharif R, LU Q F and HAN X F 2009 Chin. Phys. Lett. 26 077503.
  • 4Tang X L, Zhang H W, Su H and Jing Y L 2008 Chin.Phys. Lett. 25 3769.
  • 5Ji Y Q, Niu Z P, Feng C D and Xing D Y 2008 Chin. Phys.Lett. 25 691.
  • 6WANG D and XIONG S J 2008 Chin. Phys. Lett. 25 1102.
  • 7de Groot R A, Mueller F M, van Engen P G and Buschow K H J 1983 Phys. Rev. Lett. 50 2024.
  • 8Kirillova M M, Makhnev A A, Shreder E I, Dyakina V P and Gorina N B 1995 phys. stat. sol. (b) 187 231.
  • 9Hanssen K E H M, Mijnarends P E, Rabou L P L M and Buschow K H J 1990 Phys. Rev. B 42 1533.
  • 10Soulen Jr R J, Byers J M, Osofsky M S, Nadgorny B, Ambrose T, Cheng S F, Broussard P R, Tanaka C T, Nowak J,Moodera J S, Barry A and Coey J M D 1998 Science 282 85.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部