期刊文献+

基于刚柔耦合制曲车间曲块搬运机器人定位精度的研究 被引量:2

Research on Positioning Accuracy of Robot for Handling the Koji Block in Koji-making Workshop Based on Rigid-Flexible Coupling
原文传递
导出
摘要 针对制曲车间曲块搬运机器人对搬运精度有一定要求,所以对机器人定位精度进行研究。对初步设计的机器人进行刚柔耦合分析,得到的工作误差已经超过了用曲架孔轴配合的最小间隙确定的机械人定位精度的误差范围,通过运用对机器人关键构件进行结构优化的方法来提高定位精度。再对机器人进行刚柔耦合分析,并进行改进前后的刚柔耦合结果对比:改进前,曲架抓取定位误差为0.4 mm,曲架放置定位误差为1.1 mm;改进后,曲架抓取定位误差为0.35 mm,放置定位误差为0.70 mm。结果表明:改进后的机器人末端定位精度有明显的提高,该优化方法有效。 According to the requirement of handling precision of robot for handling the koji block in the koji-making workshop, the paper studies the positioning accuracy of the robot. The working error of the robot was obtained by the preliminary design robot rigid-flexible coupling analysis, and it had surpassed the error range of the robot positioning accuracy which was determined by the minimum clearance of the koji-shelf shaft and holes. The method of structural optimization for the robot key components was applied to improve the positioning accuracy. Carry out the rigid-flexible coupling analysis of robot again, and compared the results of the rigid-flexible coupling analysis before and after robot improvement. The grab koji-shelf positioning error of 0.4 mm, placing the 1.1 mm positioning error, the improved Koji-shelf grab positioning error was 0.35 mm, place position error was 0.7 ram. The results showed that the improved end positioning accuracy of the robot was improved obviously, and the effectiveness of the optimization was verified.
出处 《食品工业》 CAS 北大核心 2018年第2期234-238,共5页 The Food Industry
基金 四川省科技厅重点项目(2016SZ0074) 固态酿造关键技术研究四川省院士(专家)工作站项目(GY2016-01) 四川理工学院研究生创新基金资助项目(y2016016) 酿酒生物技术及应用四川省重点实验室项目(NJ2015-10) 过程装备与控制工程四川省高校重点实验项目
关键词 曲块 机器人 刚柔耦合 定位精度 the koji block robot rigid-flexible coupling the positioning accuracy
  • 相关文献

参考文献3

二级参考文献27

  • 1刘锦阳,李彬,洪嘉振.作大范围空间运动柔性梁的刚-柔耦合动力学[J].力学学报,2006,38(2):276-282. 被引量:23
  • 2Schiehlen W. Multibody system dynamics: Roots and perspectives[J]. Multibody System Dynamics, 1997 (1) : 149-188.
  • 3Wasfy T M, Noor A K. Computational strategies for flexible multibody systems [ J ]. Appl Mech Nev, 2003, 56(6): 553-613.
  • 4Kane T R, Ryan R R, Banerjee A K. Dynamics of a cantilever beam attached to a moving base[J]. Journal of Guidance, Control and Dynamics, 1987, 10(2) : 139-151.
  • 5LIU Jin-yang, HONG Jia zhen. Dynamic modeling and modal truncation approach for a high-speed rotaring elastic beam[J]. Archive of Applied Mechanics, 2002, 72: 554-563.
  • 6YANG Hui, HONG Jia-zhen, YU Zheng-yue. Dynamics modeling of a flexible hub-beam system with a tip mass[J]. Journal of Sound and Vibration, 2003, 266 :759-774.
  • 7Banerjee A K. Block-diagonal equations for multibody elastodynamics with geometric stiffness and constraints[J]. Journal of Guidance, Control and Dynamics, 1994,16(6) :1092-1100.
  • 8Mayo J, Dominguez J. Geometrically nonlinear formulation of flexible multibody systems in terms of beam elements: Geometric stiffness[J]. Computers & Structures, 1996, 59: 1039-1050.
  • 9Zhang D J, Huston R L. On dynamic stiffening of flexible bodies having high angular velocity[J]. Mech Struct and Mach, 1996, 24(3) : 313-329.
  • 10Liu A Q, Liew K M. Non-linear substructure approach for dynamic analysis of rigid-flexible multibody system[J]. Computer Methods in Applied Mechanics and Engineering, 1994, 114: 379-396.

共引文献62

同被引文献31

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部