期刊文献+

低盐饮食对高果糖引起血管重构的保护作用 被引量:2

Protective effect of low salt diet on vascular remodeling induced by high-fructose
下载PDF
导出
摘要 目的探究低盐饮食对高果糖引起血管重构的保护作用。方法选取Wistar雄性大鼠42只,体质量180~200g,共饲养8周,随机分6组:(1)对照组,给予正常大鼠饲料及蒸馏水;(2)高果糖组(HF组),给予正常饲料(0.5%NaCl,w/w)及果糖水(10%,w/v);(3)高盐组(HNa组),给予高盐饲料(7%NaCl,w/w)和蒸馏水;(4)高果糖联合高盐组(HFNa组),给予高盐饲料同时给予10%果糖水;(5)高果糖联合低盐组(HFLNa组),给予低盐饲料(0.07%NaCl,w/w)同时给予10%果糖水;(6)高果糖联合螺内酯组(HFE组),给予10%果糖水4周后,加入HFE(50mg·kg^(-1)·d^(-1)管饲法),再持续4周。检测各组大鼠动脉血压、血管壁组织学评价,以及α-SMA、纤连蛋白等在血管壁的表达变化。结果 (1)与对照组血压(111.03±9.17)mm Hg相比,HF组(133.94±5.86)mm Hg与HNa组(128.09±7.56)mm Hg血压均显著升高(P<0.05);(2)HF主要引起血管壁中层平滑肌增生,HF组α-SMA的表达结果(0.006 3±0.000 2)与对照组(0.004 6±0.000 3)相比明显增加(P<0.05),且弹力纤维增多;而HNa则主要刺激弹力纤维增粗,纤连蛋白在HNa组(0.002 6±0.000 2)和HF组(0.004 7±0.000 2)的表达与对照组(0.001 3±0.000 1)相比显著增多(P<0.001);(3)HFLNa组(106.04±9.59)mm Hg和HFE组(103.99±7.12)mm Hg血压与HF组血压相比明显降低(P<0.05);且HFLNa组(0.006 8±0.000 2)和HFE组(0.004 2±0.000 4)的血管重构得到改善,α-SMA表达与HF组(0.006 3±0.000 2)相比显著减少(P<0.05)。结论低盐饮食可有效改善HF引起的血管重构。 Objective To investigate the effect of low salt diet on vascular remodeling of rat induced by high fructose(HF).Methods Wistar male rats weighed 180-200 g were fed for 8 weeks and randomly divided into 6 groups:(1)control group was given the normal fodder and distilled water;(2)high fructose group(HF)was given normal fodder(0.5% NaCl,w/w)and fructose water(10%,w/v);(3)high-salt group(HNa)was given high salt fodder(7%NaCl,w/w)and distilled water;(4)high fructose combined with high salt diet group(HFNa)was simultaneously given high salt fodder and 10% fructose water;(5)high fructose combined low salt group(HFLNa)was simultaneously given low salt fodder and 10% fructose water;(6)high fructose combined with spirotaclone group(HFE)was given 10%fructose water for 4 weeks and then added with spirotaclone(50 mg·kg^(-1)·d^(-1) by tube feeding)for continuous 4 weeks.The changes of arterial blood pressure,vascular wall histological evaluation and expression ofα-SMA and fibronectin in vascular wall were detected in each group.Results(1)Compared with the blood pressure[(111.03±9.17)mm Hg]in the control group,the blood pressure in the HF and HNa groups were(133.94±5.86)mm Hg and(128.09±7.56)mm Hg respectively,which were significantly increased(P0.05);(2)HF mainly caused the hyperplasia of vascular wall middle layer smooth muscle.Theα-SMA expression results in the HF group was(0.006 3±0.000 21),which in the control group was(0.004 6±0.000 31),the difference was statistically significant(P0.05),moreover which promoted the elastic fibers increase;while HNa mainly stimulated the elastic fibers to thicken and extracellular matrix deposition,the fibronectin expression was 0.002 6±0.000 2 in the HNa group and(0.004 7±0.000 2)in the HF group,compared with(0.001 3±0.000 1)in the normal group,which were significantly increased(P0.001);(3)the blood pressure was(106.04±9.59)mm Hg in the HFLNa group,(103.99±7.12)mm Hg in the HFE group,compared with(133.94±5.86)mm Hg in the HF group,showing that the blood pressure in the HFLNa group and HFE group was significantly decreased compared with the HF group(P0.05);moreover the vascular remodeling in the HFLNa group(0.006 8±0.000 2)and HFE group(0.004 2±0.000 4)was improved,and compared with the HF group(0.006 3±0.000 2),α-SMA expression was significantly decreased(P0.05).Conclusion Low salt diet can effectively improve vascular remodeling induced by HF.
出处 《重庆医学》 CAS 2018年第7期875-878,882,共5页 Chongqing medicine
基金 国家自然科学基金面上项目(31571178)
关键词 膳食 限钠 螺内酯 果糖 血管重构 diet, sodium-restricted spirotaClone fructose vascular remodeling
  • 相关文献

参考文献2

二级参考文献40

  • 1Eckel RH. Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet 2005; 365: 1415-28.
  • 2Zhong M, Tan HW, Gong HP, Wang SF, Zhang Y, Zhang W. Increased serum visfatin in patients with metabolic syndrome and carotid atherosclerosis. Clin Endocrinol (Oxf) 2008 Mar 20. [Epub ahead of print] doi: 10.1111/j. 1365-2265.2008.03248.x.
  • 3van Zwieten PA, Mancia G. Background and treatment of metabolic syndrome: a therapeutic challenge. Semin Cardiothorac Vasc Ancsth 2006; 10: 206-14.
  • 4Gami AS, Witt B J, Howard DE, Erwin P J, Gami LA, Somers VK, et al. Metabolic syndrome and risk of incident cardiovascular events and death: a systematic review and meta-analysis of longitudinal studies. JAm Coil Cardiol 2007; 49: 403-14.
  • 5Kullo U, Cassidy AE, Peyser PA, Turner ST, Sheedy PF II, Bielak LF. Association between metabolic syndrome and subclinical coronary atherosclerosis in asymptomatic adults. Am J Cardiol 2004; 94: 1554-8.
  • 6Tzou WS, Douglas PS, Srinivasan SR, Bond MG, Tang R, Chen W, et al. Increased subclinical atherosclerosis in young adults with meta-bolic syndrome: the Bogalusa Heart Study. J Am Coll Cardiol 2005; 46: 457-63.
  • 7Delbosc S, Paizanis E, Magous R, Araiz C, Dime T, Cristol JP, et al. Involvement of oxidative stress and NADPH oxidase activation in the development of cardiovascular complications in a model of insulin resistance, the fructose-fed rat. Atherosclerosis 2005; 179: 43-9.
  • 8Ross R. Atherosclerosis-an inflammatory disease. N Engl J Med 1999; 340: 115-26.
  • 9Nageh MF, Sandberg ET, Marotti KR, Lin AH, Melchior EP, Bullard DC, et al. Deficiency of inflammatory cell adhesion molecules protects against atherosclerosis in mice. Arterioscler Thromb Vase Biol 1997; 17: 1517-20.
  • 10Benitez MB, Cuniberti L, Fomari MC, Rosso LG, Berardi V, Elikir G, et al. Endothelial and leukocyte adhesion molecules in primary hypertriglyceridemia. Atherosclerosis 2008; 197: 679-87.

共引文献3

同被引文献15

引证文献2

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部