期刊文献+

Degradation of Azo dye direct black BN based on adsorption and microwave-induced catalytic reaction

Degradation of Azo dye direct black BN based on adsorption and microwave-induced catalytic reaction
原文传递
导出
摘要 The novel microwave catalyst MgFe204-SiC was synthesized via sol-gel method, to remove azo dye Direct Black BN (DB BN) through adsorption and microwave-induced catalytic reaction. Microwave- induced catalytic degradation of DB BN, including adsorption behavior and its influencing Factors of DB BN on MgFc204-SiC were investigated. According to the obtained results, il indicated thai the pseudo-second-order kinetics model was suitable fbr the adsorption of DB BN onto MgFc204-SiC. Besides, the consequence of adsorption isotherm depicted that the adsorption of DB BN was in accordance with the Langmuir isotherm, which verified that the singer layer adsorption of MgF%O4- SiC was dominant than the multi-layer one. The excellent adsorption capacities of MgFe204-SiC were kept in the range of initial pH from 3 to 7. In addition, it could be concluded that the degradation rate of DB BN decreased over ten percent after the adsorption equilibrium had been attained, and thc results from the result of comparative experiments manitbsted that the adsorption process was not conducive to the process of microwave-induced catalytic degradation. The degradation intermediates and products of DB BN were identified and determined by GC-MS and LC-MS. Furthermore, combined with the catalytic mechanism of MgFe204-SiC, the proposed degradation pathways of DB BN were the involution of microwave-induced OH and holes in this catalytic system the breakage of azo bond, hydroxyl substitution, hydroxyl addition, nitration reaction, dcamination reaction, dcsorbate reaction, dehydroxy group and ring-opening reaction. The novel microwave catalyst MgFe204-SiC was synthesized via sol-gel method, to remove azo dye Direct Black BN (DB BN) through adsorption and microwave-induced catalytic reaction. Microwave- induced catalytic degradation of DB BN, including adsorption behavior and its influencing Factors of DB BN on MgFc204-SiC were investigated. According to the obtained results, il indicated thai the pseudo-second-order kinetics model was suitable fbr the adsorption of DB BN onto MgFc204-SiC. Besides, the consequence of adsorption isotherm depicted that the adsorption of DB BN was in accordance with the Langmuir isotherm, which verified that the singer layer adsorption of MgF%O4- SiC was dominant than the multi-layer one. The excellent adsorption capacities of MgFe204-SiC were kept in the range of initial pH from 3 to 7. In addition, it could be concluded that the degradation rate of DB BN decreased over ten percent after the adsorption equilibrium had been attained, and thc results from the result of comparative experiments manitbsted that the adsorption process was not conducive to the process of microwave-induced catalytic degradation. The degradation intermediates and products of DB BN were identified and determined by GC-MS and LC-MS. Furthermore, combined with the catalytic mechanism of MgFe204-SiC, the proposed degradation pathways of DB BN were the involution of microwave-induced OH and holes in this catalytic system the breakage of azo bond, hydroxyl substitution, hydroxyl addition, nitration reaction, dcamination reaction, dcsorbate reaction, dehydroxy group and ring-opening reaction.
出处 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2018年第1期71-83,共13页 环境科学与工程前沿(英文)
关键词 AdsorptionMicrowave-induced catalytic degradationDirect black BNDegradation pathway AdsorptionMicrowave-induced catalytic degradationDirect black BNDegradation pathway
  • 相关文献

参考文献1

二级参考文献9

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部