期刊文献+

薄膜生产工艺收卷精度优化控制仿真 被引量:3

Control Simulation of Winding Precision Optimization for Film Production Process
下载PDF
导出
摘要 薄膜卷取难点在于保持张力的稳定,张力的扰动会导致膜面折皱、层间滑动等问题,严重影响生产质量。张力调节受实时卷速、卷径、压力等因素的影响,是一个多变量、强耦合的系统。常规PID控制器具有一定局限性,难以实现控制器的参数自动调整及多变量间的解耦控制。针对上述难点,分析了BOPP薄膜生产线双工位收卷系统张力的各影响因素,建立了基于MATLAB的张力控制模型。利用神经网络自适应、自学习和非线性的特点对系统进行优化控制,仿真结果表明该控制算法能实时有效的调节控制器的参数以保持张力的稳定,且实现了收卷张力、压力间的解耦控制,提高了收卷系统的精度。验证了该优化策略的可行性。 The difficulty of film coiling is to maintain the stability of the tension, and tension disturbance can lead to many problems, such as crease and interlayer sliding at the film surface, which can seriously affects the production quality. Tension control is a multivariable, strong coupling system which is influenced by factors such as roll speed, roll diameter, pressure and so on. The conventional PID controller has some limitations, the automatic adjustment of parameters and decoupling control among the multiple variables for the controller can not be realized easily with that. In view of the above difficulties, the influence factors of BOPP film production winding system was analyzed and ten- sion control model was established based on MATLAB. Neural network, which has the characteristics including adap- tivity, self - learning and nonlinearity, was used to optimize the control. Tthe results show that the parameters of the controller can be effectively adjusted in real time to keep stability of the tension, the decoupling control of tension and pressure is realized, and the precision of the winding system is effectively improved. The validity of the optimization strategy is verified.
机构地区 武汉科技大学
出处 《计算机仿真》 北大核心 2018年第2期181-185,共5页 Computer Simulation
基金 国家自然科学基金资助项目(61174107)
关键词 张力控制 神经网络 收卷压力 模型 仿真 Tension control Neural network Winding pressure Model Simulation
  • 相关文献

参考文献10

二级参考文献55

共引文献155

同被引文献33

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部