期刊文献+

机械臂神经网络非奇异快速终端滑模控制 被引量:18

Nonsingular Fast Terminal Sliding Mode Control of Robotic Manipulators Based on Neural Networks
下载PDF
导出
摘要 针对多自由度机械臂轨迹跟踪控制系统存在收敛速度慢、跟踪精度低的问题,提出了一种基于径向基神经网络(RBFNN)的非奇异快速终端滑模(NFTSM)自适应轨迹跟踪控制方法。首先,该方法采用非奇异快速终端滑模超曲面,切换控制项引入连续终端吸引子,使得系统能在有限的时间内收敛到平衡点。其次,采用RBFNN逼近系统未知非线性动力学,并结合逼近误差的自适应补偿机制,实现无模型控制。利用Lyapunov理论证明闭环系统的全局渐进稳定性和有限时间收敛性。最后,将该控制方法应用于Denso串联机械臂进行实验验证,并分析系统传输延时对实验结果的影响,提出解决方法。仿真和实验结果表明,该控制方法能有效地提高系统收敛速度和跟踪精度,增强对外部扰动的鲁棒性,削弱系统抖振。 A nonsingular fast terminal sliding mode adaptive controller based on RBF neural network was proposed for trajectory tracking control of multi degree of freedom manipulator with slow convergence speed and low tracking precision. Firstly,the nonsingular fast terminal sliding mode hypersurface was adopted in the control scheme and the continuous terminal attractor was introduced into the switch control,which made the system converge to the equilibrium point in a finite time. Secondly,the adaptive RBF neural network was used to approximate the unknown nonlinear dynamics of the system,the adaptive compensation mechanism of approximation error and adaptive law of weights of neural networks were designed to realize the model free control. The global asymptotic stability and finite time convergence of the closed-loop system were proved by Lyapunov theory. Finally,the control method was applied to Denso serial manipulator for experimental verification,the effect of transmission delay on the experimental results was analyzed and the solution was proposed. The simulation and experimental results demonstrated that the proposed control method can improve the convergence speed and the tracking accuracy of the system effectively,and enhance the robustness of the external disturbance. At the same time,it can weaken the chattering of the system and enhance the real-time control.
出处 《农业机械学报》 EI CAS CSCD 北大核心 2018年第2期395-404,240,共11页 Transactions of the Chinese Society for Agricultural Machinery
基金 国家自然科学基金项目(61403274) 天津市智能制造科技重大专项(15ZXZNGX00160)
关键词 机械臂 轨迹跟踪 终端滑模 神经网络 有限时间收敛 robotic manipulators trajectory tracking terminal sliding mode neural network finite time convergence
  • 相关文献

参考文献3

二级参考文献12

  • 1Venkataraman S T, Gulati S. Terminal sliding modes: A new approach to nonlinear control synthesis[A]. Proceedings of the International Conference on Advanced Robotics[C]. Piscataway, NJ, USA: IEEE, 1991. 443-448.
  • 2Man Z H, Yu X H. Terminal sliding mode control of MIMO linear systems[A]. Proceedings of the IEEE Conference on Decision and Control[C]. Piscataway, NJ, USA: IEEE, 1996. 4619-4624.
  • 3Yu X H, Man Z H, Wu Y Q. Terminal sliding modes with fast transient performance[A]. Proceedings of the IEEE Conference on Decision and Control[C]. Piscataway, NJ, USA: IEEE, 1997. 962-963.
  • 4Yu S H, Yu X H, Man Z H. Robust global terminal sliding mode control of SISO nonlinear uncertain systems[A]. Proceedings of the IEEE Conference on Decision and Control[C]. Piscataway, NJ, USA: IEEE, 2000. 2198-2203.
  • 5Feng Y, Yu X H, Man Z H. Non-singular terminal sliding mode control and its application for robot manipulators[A]. Proceedings of the IEEE International Symposium on Circuits and Systems[C]. Piscataway, NJ, USA: IEEE, 2001. 545-548.
  • 6Abramowitz M, Stegun I A. Handbook of Mathematical Functions[M]. New York, USA: Dover Publications, 1972.
  • 7张达科,胡跃明,胡战虎.低抖振非奇异终端滑模控制[J].广东工业大学学报,2007,24(3):32-36. 被引量:6
  • 8LIAO YiHuan,LI DaoKui,TANG GuoJin.Translational zero-disturbance curve and its application to zero-disturbance motion planning of space manipulator system[J].Science China(Technological Sciences),2011,54(5):1234-1239. 被引量:4
  • 9冯勇,鲍晟,余星火.非奇异终端滑模控制系统的设计方法[J].控制与决策,2002,17(2):194-198. 被引量:66
  • 10TANG Shuai,YANG QiuHui,QIAN ShaoKe,ZHENG ZhiQiang.Height and attitude active disturbance rejection controller design of a small-scale helicopter[J].Science China(Information Sciences),2015,58(3):139-155. 被引量:8

共引文献77

同被引文献187

引证文献18

二级引证文献89

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部