期刊文献+

结合概率矩阵分解的混合型推荐算法 被引量:24

Hybrid recommendation algorithm based on probability matrix factorization
下载PDF
导出
摘要 针对社交网络推荐系统中存在的数据稀疏、冷启动等问题,提出了一种结合特征传递和概率矩阵分解(TPMF)的社交网络混合型推荐算法。以概率矩阵因式分解(PMF)方法作为推荐框架,不仅考虑了用户信任网络,还结合推荐项目之间的关联关系、用户项目评分矩阵和自适应权重来权衡个人潜在特征和社交潜在特征对用户的影响程度。将社交网络中用户间的信任特征传递引入推荐系统中作为推荐的有效依据。实验结果表明,与基于用户的协同过滤(UBCF)、TidalTrust、PMF和SoRec算法相比,TPMF的平均绝对误差(MAE)直接相减后降低了4.1%到20.8%,均方根误差(RMSE)降低了3.3%到18.5%。在冷启动问题中,与上述四种算法相比,TPMF的平均绝对误差相减后降低了1.6%到14.7%,均方根误差降低了约1.2%到9.7%,能有效缓解冷启动问题,提高算法的鲁棒性。 Aiming at the problems of data sparseness and cold start in social network recommendation systems, a hybrid social network recommendation algorithm based on feature Transform and Probabilistic Matrix Factorization (TPMF) was proposed. Using Probability Matrix Factorization (PMF) method as recommendation framework, trust network, the relationship between the recommended items, user-item score matrix and adaptive weight were combined to balance the impact of individual and social potential characteristics on users. The trust feature transfer was introduced into the recommendation system as valid basis for recommendation. Compared to the User-Based Collaborative Filtering (UBCF), TidalTrust, PMF and SoRec, the experimental results show that the Mean Absolute Error (MAE) of TPMF was decreased by 4.1% to 20.8%, and the Root Mean Square Error (RMSE) of TPMF was decreased by 3.3% to 18.5%. Compared with the above four algorithms, for the cold start problem, the Mean Absolute Error was decreased by 1.6 to 14.7%, and the RMSE was decreased by 1.2% to 9.7%, which verifies TPMF effectively alleviates cold start problem and improves the robustness of the algorithm.
出处 《计算机应用》 CSCD 北大核心 2018年第3期644-649,共6页 journal of Computer Applications
关键词 社交网络 特征传递 概率矩阵分解 信任网络 推荐系统 social network feature transfer Probability Matrix Factorization (PMF) trust network recommendationsystem
  • 相关文献

参考文献4

二级参考文献137

  • 1Chatterjee P, Hoffman DL, Novak TP. Modeling the clickstream: Implications for Web-based advertising efforts. Marketing Science, 2003,22(4):520-541. [doi: 10.1287/mksc.22.4.520.24906].
  • 2Wang C, Zhang P, Choi R, D'Eredita M. Understanding consumers' attitude toward advertising. In: Proc. of the 8th Americas Conf. on Information System. 2002. 1143-1148.
  • 3Ribeiro-Neto B, Cristo M, Golgher PB, Moura ES. Impedance coupling in content-targeted advertising. In: Proe. of the SIGIR 2605. New York: ACM Press, 2005. 496-503. [doi: 10.1145/1076034.1076119].
  • 4Lacerda A, Cristo M, Goncalves MA, Fan WG, Ziviani N, Ribeiro-Neto B. Learning to advertise. In: Proc. of the SIGIR 2006. New York: ACM Press, 2006. 549-556. [doi: 10.1145/1148170.1148265].
  • 5Broder AZ, Fontoura M, Josifovski V, Riedel L. A semantic approach to contextual advertising. In: Proc. of the SIGIR. 2007. 559-566. [doi: 10.1145/1277741.1277837].
  • 6Chakrabarti D, Agarwal D, Josifovski V. Contextual advertising by combining relevance with click feedback. In: Proc. of the 17th Int'l Con1: on World Wide Web (WWW 2008). Beijing: ACM Press, 2008.417-426. [doi: 10.1145/1367497.1367554].
  • 7Yih W, Goodman J, Carvalho VR. Finding advertising keywords on Web pages. In: Proc. of the 15th Int'l Conf. on World Wide Web (WWW 2006). New York: ACM Press, 2006. 213-222. [doi: 10.1145/1135777.1135813].
  • 8Belkin N, Croft B. Information filtering and information retrieval. Communications of the ACM, 1992,35(12):29-37. [doi: 10.1145/138859.138861].
  • 9Balabanovic M, Shoham Y. Fab: Content-based collaborative recommendation. Communications of the ACM, 1997,40(3):66-72. [doi: 10.1145/245108.245124].
  • 10Resnick P, Iacovou N, Suchak M, Bergstrom P, Riedl J. Grouplens: An open architecture for collaborative filtering of netnews. In: Proc. of the CSCW'94, 1994. [doi: 10.1145/192844.192905].

共引文献255

同被引文献187

引证文献24

二级引证文献137

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部